• 231.88 KB
  • 2021-11-10 发布

2019年四川省宜宾市中考数学试卷含答案

  • 27页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2019年四川省宜宾市中考数学试卷 一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。‎ ‎1.(3分)2的倒数是(  )‎ A.‎1‎‎2‎ B.﹣2 C.‎-‎‎1‎‎2‎ D.‎‎±‎‎1‎‎2‎ ‎2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为(  )‎ A.5.2×10﹣6 B.5.2×10﹣5 C.52×10﹣6 D.52×10﹣5‎ ‎3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE绕着点A顺时针旋转到与△ABF重合,则EF=(  )‎ A.‎41‎ B.‎42‎ C.5‎2‎ D.2‎‎13‎ ‎4.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为(  )‎ A.﹣2 B.b C.2 D.﹣b ‎5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是(  )‎ A.10 B.9 C.8 D.7‎ ‎6.(3分)如表记录了两位射击运动员的八次训练成绩:‎ 次数 环数 运动员 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲 ‎10‎ ‎7‎ ‎7‎ ‎8‎ ‎8‎ ‎8‎ ‎9‎ ‎7‎ 乙 ‎10‎ ‎5‎ ‎5‎ ‎8‎ ‎9‎ ‎9‎ ‎8‎ ‎10‎ 根据以上数据,设甲、乙的平均数分别为x甲、x乙,甲、乙的方差分别为s甲2,s乙2,则下列结论正确的是(  )‎ A.x甲‎=‎x乙,s甲2<s乙2 B.x甲‎=‎x乙,s甲2>s乙2 ‎ C.x甲‎>‎x乙,s甲2<s乙2 D.x甲‎<‎x乙,s甲2<s乙2‎ ‎7.(3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是(  )‎ A.‎3‎‎2‎ B.‎2‎‎3‎‎5‎ C.‎3‎‎3‎ D.‎‎3‎‎4‎ ‎8.(3分)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是(  )‎ A.存在实数k,使得△ABC为等腰三角形 ‎ B.存在实数k,使得△ABC的内角中有两角分别为30°和60° ‎ C.任意实数k,使得△ABC都为直角三角形 ‎ D.存在实数k,使得△ABC为等边三角形 二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。‎ ‎9.(3分)分解因式:b2+c2+2bc﹣a2=   .‎ ‎10.(3分)如图,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=   °.‎ ‎11.(3分)将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为   .‎ ‎12.(3分)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=   .‎ ‎13.(3分)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是   .‎ ‎14.(3分)若关于x的不等式组x-2‎‎4‎‎<‎x-1‎‎3‎‎2x-m≤2-x有且只有两个整数解,则m的取值范围是   .‎ ‎15.(3分)如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2‎3‎,则⊙O的面积是   .‎ ‎16.(3分)如图,△ABC和△CDE都是等边三角形,且点A、C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是   (写出所有正确结论的序号).‎ ‎①AM=BN;②△ABF≌△DNF;③∠FMC+∠FNC=180°;④‎‎1‎MN‎=‎1‎AC+‎‎1‎CE 三、解答题:(本大题共8小题,共72分)解答应写出文字说明、证明过程或演算步骤。‎ ‎17.(10分)(1)计算:(2019‎-‎‎2‎)0﹣2﹣1+|﹣1|+sin245°‎ ‎(2)化简:‎2xyx‎2‎‎-‎y‎2‎‎÷‎(‎1‎x-y‎+‎‎1‎x+y)‎ ‎18.(6分)如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.‎ ‎19.(8分)某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.‎ ‎(1)求三个年级获奖总人数;‎ ‎(2)请补全扇形统计图的数据;‎ ‎(3)在获一等奖的同学中,七年级和八年级的人数各占‎1‎‎4‎,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.‎ ‎20.(8分)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.‎ ‎21.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)‎ ‎22.(10分)如图,已知反比例函数y‎=‎kx(k>0)的图象和一次函数y=﹣x+b的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.‎ ‎(1)求反比例函数和一次函数的解析式;‎ ‎(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.‎ ‎23.(10分)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.‎ ‎(1)求证:直线BD是⊙O的切线;‎ ‎(2)求⊙O的半径OD的长;‎ ‎(3)求线段BM的长.‎ ‎24.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.‎ ‎(1)求此抛物线和直线AB的解析式;‎ ‎(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;‎ ‎(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.‎ ‎2019年四川省宜宾市中考数学试卷 参考答案与试题解析 一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。‎ ‎1.(3分)2的倒数是(  )‎ A.‎1‎‎2‎ B.﹣2 C.‎-‎‎1‎‎2‎ D.‎‎±‎‎1‎‎2‎ ‎【解答】解:2的倒数是‎1‎‎2‎,‎ 故选:A.‎ ‎2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为(  )‎ A.5.2×10﹣6 B.5.2×10﹣5 C.52×10﹣6 D.52×10﹣5‎ ‎【解答】解:0.000052=5.2×10﹣5;‎ 故选:B.‎ ‎3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE绕着点A顺时针旋转到与△ABF重合,则EF=(  )‎ A.‎41‎ B.‎42‎ C.5‎2‎ D.2‎‎13‎ ‎【解答】解:由旋转变换的性质可知,△ADE≌△ABF,‎ ‎∴正方形ABCD的面积=四边形AECF的面积=25,‎ ‎∴BC=5,BF=DE=1,‎ ‎∴FC=6,CE=4,‎ ‎∴EF‎=FC‎2‎+CE‎2‎=‎52‎=‎2‎13‎.‎ 故选:D.‎ ‎4.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为(  )‎ A.﹣2 B.b C.2 D.﹣b ‎【解答】解:根据题意得:‎ x1+x2‎=-‎-2‎‎1‎=‎2,‎ 故选:C.‎ ‎5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是(  )‎ A.10 B.9 C.8 D.7‎ ‎【解答】解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,‎ 则组成这个几何体的小正方体的个数是7个或8个或9个,‎ 组成这个几何体的小正方体的个数最多是9个.‎ 故选:B.‎ ‎6.(3分)如表记录了两位射击运动员的八次训练成绩:‎ 次数 环数 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 运动员 甲 ‎10‎ ‎7‎ ‎7‎ ‎8‎ ‎8‎ ‎8‎ ‎9‎ ‎7‎ 乙 ‎10‎ ‎5‎ ‎5‎ ‎8‎ ‎9‎ ‎9‎ ‎8‎ ‎10‎ 根据以上数据,设甲、乙的平均数分别为x甲、x乙,甲、乙的方差分别为s甲2,s乙2,则下列结论正确的是(  )‎ A.x甲‎=‎x乙,s甲2<s乙2 B.x甲‎=‎x乙,s甲2>s乙2 ‎ C.x甲‎>‎x乙,s甲2<s乙2 D.x甲‎<‎x乙,s甲2<s乙2‎ ‎【解答】解:(1)x甲‎=‎‎1‎‎8‎(10+7+7+8+8+8+9+7)=8;x乙‎=‎‎1‎‎8‎(10+5+5+8+9+9+8+10)=8;‎ s甲2‎=‎‎1‎‎8‎[(10﹣8)2+(7﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2]=1;‎ s乙2‎=‎‎1‎‎8‎[(10﹣8)2+(5﹣8)2+(5﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(8﹣8)2+(10﹣8)2]‎=‎‎7‎‎2‎,‎ ‎∴x甲‎=‎x乙,s甲2<s乙2,‎ 故选:A.‎ ‎7.(3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是(  )‎ A.‎3‎‎2‎ B.‎2‎‎3‎‎5‎ C.‎3‎‎3‎ D.‎‎3‎‎4‎ ‎【解答】解:连接OB、OC,过点O作ON⊥BC,垂足为N,‎ ‎∵△ABC为等边三角形,‎ ‎∴∠ABC=∠ACB=60°,‎ ‎∵点O为△ABC的内心 ‎∴∠OBC=∠OBA‎=‎‎1‎‎2‎∠ABC,∠OCB‎=‎‎1‎‎2‎∠ACB.‎ ‎∴∠OBA=∠OBC=∠OCB=30°.‎ ‎∴OB=OC.∠BOC=120°,‎ ‎∵ON⊥BC,BC=2,‎ ‎∴BN=NC=1,‎ ‎∴ON=tan∠OBC•BN‎=‎3‎‎3‎×‎1‎=‎‎3‎‎3‎,‎ ‎∴S△OBC‎=‎‎1‎‎2‎BC•ON‎=‎‎3‎‎3‎.‎ ‎∵∠EOF=∠AOB=120°,‎ ‎∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.‎ 在△EOB和△FOC中,‎ ‎∠OBE=∠OCF=30°‎OB=OC‎∠EOB=∠FOC‎,‎ ‎∴△EOB≌△FOC(ASA).‎ ‎∴S阴影=S△OBC‎=‎‎3‎‎3‎ 故选:C.‎ ‎8.(3分)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是(  )‎ A.存在实数k,使得△ABC为等腰三角形 ‎ B.存在实数k,使得△ABC的内角中有两角分别为30°和60° ‎ C.任意实数k,使得△ABC都为直角三角形 ‎ D.存在实数k,使得△ABC为等边三角形 ‎【解答】解:A、如图1,可以得△ABC为等腰三角形,正确;‎ B、如图3,∠ACB=30°,∠ABC=60°,可以得△ABC的内角中有两角分别为30°和60°,正确;‎ C、如图2和3,∠BAC=90°,可以得△ABC为直角三角形,正确;‎ D、不存在实数k,使得△ABC为等边三角形,不正确;‎ 本题选择结论不正确的,‎ 故选:D.‎ 二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。‎ ‎9.(3分)分解因式:b2+c2+2bc﹣a2= (b+c+a)(b+c﹣a) .‎ ‎【解答】解:原式=(b+c)2﹣a2=(b+c+a)(b+c﹣a).‎ 故答案为:(b+c+a)(b+c﹣a)‎ ‎10.(3分)如图,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB= 60 °.‎ ‎【解答】解:在六边形ABCDEF中,‎ ‎(6﹣2)×180°=720°,‎ ‎720°‎‎6‎‎=‎‎120°,‎ ‎∴∠B=120°,‎ ‎∵AD∥BC,‎ ‎∴∠DAB=180°﹣∠B=60°,‎ 故答案为:60°.‎ ‎11.(3分)将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为 y=2(x+1)2﹣2 .‎ ‎【解答】解:将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,‎ 所得图象的解析式为:y=2(x+1)2﹣2.‎ 故答案为:y=2(x+1)2﹣2.‎ ‎12.(3分)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD= ‎16‎‎5‎ .‎ ‎【解答】解:在Rt△ABC中,AB‎=AC‎2‎+BC‎2‎=‎5,‎ 由射影定理得,AC2=AD•AB,‎ ‎∴AD‎=AC‎2‎AB=‎‎16‎‎5‎,‎ 故答案为:‎16‎‎5‎.‎ ‎13.(3分)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是 65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50 .‎ ‎【解答】解:设每个季度平均降低成本的百分率为x,‎ 依题意,得:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.‎ 故答案为:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.‎ ‎14.(3分)若关于x的不等式组x-2‎‎4‎‎<‎x-1‎‎3‎‎2x-m≤2-x有且只有两个整数解,则m的取值范围是 ﹣2≤m<1 .‎ ‎【解答】解:‎x-2‎‎4‎‎<x-1‎‎3‎①‎‎2x-m≤2-x②‎ 解不等式①得:x>﹣2,‎ 解不等式②得:x‎≤‎m+2‎‎3‎,‎ ‎∴不等式组的解集为﹣2<x‎≤‎m+2‎‎3‎,‎ ‎∵不等式组只有两个整数解,‎ ‎∴0‎≤m+2‎‎3‎<‎1,‎ 解得:﹣2≤m<1,‎ 故答案为﹣2≤m<1.‎ ‎15.(3分)如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2‎3‎,则⊙O的面积是 4π .‎ ‎【解答】解:∵∠A=∠BDC,‎ 而∠ACB=∠CDB=60°,‎ ‎∴∠A=∠ACB=60°,‎ ‎∴△ACB为等边三角形,‎ ‎∵AC=2‎3‎,‎ ‎∴圆的半径为2,‎ ‎∴⊙O的面积是4π,‎ 故答案为:4π.‎ ‎16.(3分)如图,△ABC和△CDE都是等边三角形,且点A、C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是 ①③④ (写出所有正确结论的序号).‎ ‎①AM=BN;②△ABF≌△DNF;③∠FMC+∠FNC=180°;④‎‎1‎MN‎=‎1‎AC+‎‎1‎CE ‎【解答】证明:①∵△ABC和△CDE都是等边三角形,‎ ‎∴AC=BC,CE=CD,∠ACB=∠ECD=60°,‎ ‎∴∠ACB+∠ACE=∠ECD+∠ACE,‎ 即∠BCE=∠ACD,‎ 在△BCE和△ACD中,‎ BC=AC‎∠BCE=∠ACDCE=CD‎,‎ ‎∴△BCE≌△ACD(SAS),‎ ‎∴AD=BE,∠ADC=∠BEC,∠CAD=∠CBE,‎ 在△DMC和△ENC中,‎ ‎∠MDC=∠NECDC=BC‎∠MCD=∠NCE=60°‎‎,‎ ‎∴△DMC≌△ENC(ASA),‎ ‎∴DM=EN,CM=CN,‎ ‎∴AD﹣DM=BE﹣EN,即AM=BN;‎ ‎②∵∠ABC=60°=∠BCD,‎ ‎∴AB∥CD,‎ ‎∴∠BAF=∠CDF,‎ ‎∵∠AFB=∠DFN,‎ ‎∴△ABF∽△DNF,找不出全等的条件;‎ ‎③∵∠AFB+∠ABF+∠BAF=180°,∠FBC=∠CAF,‎ ‎∴∠AFB+∠ABC+∠BAC=180°,‎ ‎∴∠AFB=60°,‎ ‎∴∠MFN=120°,‎ ‎∵∠MCN=60°,‎ ‎∴∠FMC+∠FNC=180°;‎ ‎④∵CM=CN,∠MCN=60°,‎ ‎∴△MCN是等边三角形,‎ ‎∴∠MNC=60°,‎ ‎∵∠DCE=60°,‎ ‎∴MN∥AE,‎ ‎∴MNAC‎=DNCD=‎CD-CNCD,‎ ‎∵CD=CE,MN=CN,‎ ‎∴MNAC‎=‎CE-MNCE,‎ ‎∴MNAC‎=‎1‎-‎MNCE,‎ 两边同时除MN得‎1‎AC‎=‎1‎MN-‎‎1‎CE,‎ ‎∴‎1‎MN‎=‎1‎AC+‎‎1‎CE.‎ 故答案为①③④‎ 三、解答题:(本大题共8小题,共72分)解答应写出文字说明、证明过程或演算步骤。‎ ‎17.(10分)(1)计算:(2019‎-‎‎2‎)0﹣2﹣1+|﹣1|+sin245°‎ ‎(2)化简:‎2xyx‎2‎‎-‎y‎2‎‎÷‎(‎1‎x-y‎+‎‎1‎x+y)‎ ‎【解答】解:(1)原式=1‎-‎1‎‎2‎+‎1+(‎2‎‎2‎)2‎ ‎=2‎‎-‎1‎‎2‎+‎‎1‎‎2‎ ‎=2‎ ‎(2)原式‎=‎2xy‎(x+y)(x-y)‎÷‎‎2x‎(x+y)(x-y)‎ ‎=‎2xy‎(x+y)(x-y)‎×‎‎(x+y)(x-y)‎‎2x‎ ‎ ‎=y.‎ ‎18.(6分)如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.‎ ‎【解答】证明:∵∠BAE=∠DAC ‎∴∠BAE+∠CAE=∠DAC+∠CAE ‎∴∠CAB=∠EAD,且AB=AD,AC=AE ‎∴△ABC≌△ADE(SAS)‎ ‎∴∠C=∠E ‎19.(8分)某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.‎ ‎(1)求三个年级获奖总人数;‎ ‎(2)请补全扇形统计图的数据;‎ ‎(3)在获一等奖的同学中,七年级和八年级的人数各占‎1‎‎4‎,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.‎ ‎【解答】解:(1)三个年级获奖总人数为17÷34%=50(人);‎ ‎(2)三等奖对应的百分比为‎10‎‎50‎‎×‎100%=20%,‎ 则一等奖的百分比为1﹣(14%+20%+34%+24%)=8%,‎ 补全图形如下:‎ ‎(3)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,‎ 画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)‎ 共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,‎ 所以所选出的两人中既有七年级又有九年级同学的概率为‎1‎‎3‎.‎ ‎20.(8分)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.‎ ‎【解答】解:设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时.‎ 根据题意,得:‎450‎x+10‎‎+‎1‎‎2‎=‎‎440‎x,‎ 解得:x=80,或x=﹣110(舍去),‎ ‎∴x=80,‎ 经检验,x=,80是原方程的解,且符合题意.‎ 当x=80时,x+10=90.‎ 答:甲车的速度为90千米/时,乙车的速度为80千米/时.‎ ‎21.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)‎ ‎【解答】解:设AM=x米,‎ 在Rt△AFM中,∠AFM=45°,‎ ‎∴FM=AM=x,‎ 在Rt△AEM中,tan∠AEM‎=‎AMEM,‎ 则EM‎=AMtan∠AEM=‎‎3‎‎3‎x,‎ 由题意得,FM﹣EM=EF,即x‎-‎‎3‎‎3‎x=40,‎ 解得,x=60+20‎3‎,‎ ‎∴AB=AM+MB=61+20‎3‎,‎ 答:该建筑物的高度AB为(61+20‎3‎)米.‎ ‎22.(10分)如图,已知反比例函数y‎=‎kx(k>0)的图象和一次函数y=﹣x+b的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.‎ ‎(1)求反比例函数和一次函数的解析式;‎ ‎(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.‎ ‎【解答】解:(1)∵过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.‎ ‎∴S△OPA‎=‎‎1‎‎2‎|k|=1,‎ ‎∴|k|=2,‎ ‎∵在第一象限,‎ ‎∴k=2,‎ ‎∴反比例函数的解析式为y‎=‎‎2‎x;‎ ‎∵反比例函数y‎=‎kx(k>0)的图象过点P(1,m),‎ ‎∴m‎=‎2‎‎1‎=‎2,‎ ‎∴P(1,2),‎ ‎∵次函数y=﹣x+b的图象过点P(1,2),‎ ‎∴2=﹣1+b,解得b=3,‎ ‎∴一次函数的解析式为y=﹣x+3;‎ ‎(2)设直线y=﹣x+3交x轴、y轴于C、D两点,‎ ‎∴C(3,0),D(0,3),‎ 解y=-x+3‎y=‎‎2‎x得x=1‎y=2‎或x=2‎y=1‎,‎ ‎∴P(1,2),M(2,1),‎ ‎∴PA=1,AD=3﹣2=1,BM=1,BC=3﹣2=1,‎ ‎∴五边形OAPMB的面积为:S△COD﹣S△BCM﹣S△ADP‎=‎1‎‎2‎×‎3×3‎-‎1‎‎2‎×‎1×1‎-‎1‎‎2‎×‎1×1‎=‎‎7‎‎2‎.‎ ‎23.(10分)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.‎ ‎(1)求证:直线BD是⊙O的切线;‎ ‎(2)求⊙O的半径OD的长;‎ ‎(3)求线段BM的长.‎ ‎【解答】(1)证明:∵OA=OD,∠A=∠B=30°,‎ ‎∴∠A=∠ADO=30°,‎ ‎∴∠DOB=∠A+∠ADO=60°,‎ ‎∴∠ODB=180°﹣∠DOB﹣∠B=90°,‎ ‎∵OD是半径,‎ ‎∴BD是⊙O的切线;‎ ‎(2)∵∠ODB=90°,∠DBC=30°,‎ ‎∴OD‎=‎‎1‎‎2‎OB,‎ ‎∵OC=OD,‎ ‎∴BC=OC=1,‎ ‎∴⊙O的半径OD的长为1;‎ ‎(3)∵OD=1,‎ ‎∴DE=2,BD‎=‎‎3‎,‎ ‎∴BE‎=BD‎2‎+DE‎2‎=‎‎7‎,‎ ‎∵BD是⊙O的切线,BE是⊙O 的割线,‎ ‎∴BD2=BM•BE,‎ ‎∴BM‎=BD‎2‎BE=‎3‎‎7‎=‎‎3‎‎7‎‎7‎.‎ ‎24.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.‎ ‎(1)求此抛物线和直线AB的解析式;‎ ‎(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;‎ ‎(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.‎ ‎【解答】解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,‎ ‎∴‎9a-6+c=0‎c=-3‎,‎ ‎∴a=1‎c=-3‎,‎ ‎∴抛物线的解析式为y=x2﹣2x﹣3,‎ ‎∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点,‎ ‎∴‎3k+b=0‎b=-3‎,解得:k=1‎b=-3‎,‎ ‎∴直线AB的解析式为y=x﹣3,‎ ‎(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,‎ ‎∴抛物线的顶点C的坐标为(1,﹣4),‎ ‎∵CE∥y轴,‎ ‎∴E(1,﹣2),‎ ‎∴CE=2,‎ ‎①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,‎ 设M(a,a﹣3),则N(a,a2﹣2a﹣3),‎ ‎∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,‎ ‎∴﹣a2+3a=2,‎ 解得:a=2,a=1(舍去),‎ ‎∴M(2,﹣1),‎ ‎②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,‎ 设M(a,a﹣3),则N(a,a2﹣2a﹣3),‎ ‎∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,‎ ‎∴a2﹣3a=2,‎ 解得:a‎=‎‎3+‎‎17‎‎2‎,a‎=‎‎3-‎‎17‎‎2‎(舍去),‎ ‎∴M(‎3+‎‎17‎‎2‎,‎-3+‎‎17‎‎2‎),‎ 综合可得M点的坐标为(2,﹣1)或(‎3+‎‎17‎‎2‎‎,‎‎-3+‎‎17‎‎2‎).‎ ‎(3)如图,作PG∥y轴交直线AB于点G,‎ 设P(m,m2﹣2m﹣3),则G(m,m﹣3),‎ ‎∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,‎ ‎∴S△PAB=S△PGA+S△PGB‎=‎1‎‎2‎PG⋅OB=‎1‎‎2‎×(-m‎2‎+3m)×3=-‎3‎‎2‎m‎2‎+‎9‎‎2‎m=-‎3‎‎2‎(m-‎3‎‎2‎‎)‎‎2‎+‎‎27‎‎8‎,‎ ‎∴当m‎=‎‎3‎‎2‎时,△PAB面积的最大值是‎27‎‎8‎,此时P点坐标为(‎3‎‎2‎‎,-‎‎3‎‎2‎).‎ 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/6/30 10:01:25;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521‎