- 88.50 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
22.2 二次函数与一元二次方程
1.总结出二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根,两个相等的实根和没有实根.
2.会利用二次函数的图象求一元二次方程的近似解.
3.会用计算方法估计一元二次方程的根.
重点
方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.
难点
二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系.
一、复习引入
1.二次函数:y=ax2+bx+c(a≠0)的图象是一条抛物线,它的开口由什么决定呢?
补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.
2.二次函数y=ax2+bx+c(a≠0)的图象和性质:
(1)顶点坐标与对称轴;
(2)位置与开口方向;
(3)增减性与最值.
当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当x=-时,函数y有最小值.
当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小;当x=-时,函数y有最大值.
二、新课教学
探索二次函数与一元二次方程:
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
(1)每个图象与x轴有几个交点?
(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?
(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
归纳:二次函数y=ax2+bx+c的图象和x轴交点有三种情况:
①有两个交点,
2
②有一个交点,
③没有交点.
当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
当b2-4ac>0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac<0时,抛物线与x轴没有交点.
举例:求二次函数图象y=x2-3x+2与x轴的交点A,B的坐标.
结论:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标.因此,抛物线与一元二次方程是有密切联系的.
即:若一元二次方程ax2+bx+c=0的两个根是x1,x2,则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0),B(x2,0).
例1 已知函数y=-x2-7x+,
(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与y轴的交点关于图象对称轴的对称点,然后画出函数图象的草图;
(2)自变量x在什么范围内时,y随着x的增大而增大?何时y随着x的增大而减少;并求出函数的最大值或最小值.
三、巩固练习
请完成课本练习:第47页1,2
四、课堂小结
二次函数与一元二次方程根的情况的关系.
五、作业布置
教材第47页 第3,4,5,6题.
2