- 614.50 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
二次函数与圆
1.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC = a,∠CBE = b,求sin(a-b)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.
2.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象.(2)点Q(8,m)在抛物线上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值.
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.
C
A
M
B
x
y
O
D
E
3.如图(13),已知平行四边形的顶点的坐标是,平行于轴,三点在抛物线上,交轴于点,一条直线与交于
点,与交于点,如果点的横坐标为,四边形的面积为.
(1)求出两点的坐标;(2)求的值;
(3)作的内切圆,切点分别为,求的值.
图(13)
4、(湖南湘潭卷)已知:如图,抛物线的图象与轴分别交于两点,与轴交于点,经过原点及点,点是劣弧上一动点(点与不重合).
(1)求抛物线的顶点的坐标;(2)求的面积;
(3)连交于点,延长至,使,试探究当点运动到何处时,直线与相切,并请说明理由.
5、(辽宁卷)如图,已知,以点为圆心,以长为半径的圆交轴于另一点,过点作交于点,直线交轴于点.
(1)求证:直线是的切线;
(2)求点的坐标及直线的解析式;
x
y
A
B
C
O
F
E
(3)有一个半径与的半径相等,且圆心在轴上运动的.若与直线相交于两点,是否存在这样的点,使是直角三角形.若存在,求出点的坐标;若不存在,请说明理由.
6、(辽宁沈阳卷)如图,在平面直角坐标系中,直线分别与轴,轴交于点,点.
(1)以为一边在第一象限内作等边及的外接圆(用尺规作图,不要求写作法,但要保留作图痕迹);
(2)若与轴的另一个交点为点,求,,,四点的坐标;
(3)求经过,,三点的抛物线的解析式,并判断在抛物线上是否存在点,使的面积等于的面积?若存在,请直接写出所有符合条件的点的坐标;若不存在,请说明理由.
.
7、(山东滨州卷)已知:抛物线与轴相交于两点,且.(Ⅰ)若,且为正整数,求抛物线的解析式;(Ⅱ)若,求的取值范围;
(Ⅲ)试判断是否存在,使经过点和点的圆与轴相切于点,若存在,求出的值;若不存在,试说明理由;
(Ⅳ)若直线过点,与(Ⅰ)中的抛物线相交于两点,且使,求直线的解析式.
8、(四川课改卷)如图,在平面直角坐标系中,已知点,,以为边在轴下方作正方形,点是线段与正方形的外接圆除点以外的另一个交点,连结与相交于点.
(1)求证:;
(2)设直线是的边的垂直平分线,且与相交于点.若是的外心,试求经过三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点,使该点关于直线的对称点在轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.
A
E
O
D
C
B
G
F
x
y
l
Q
9、(浙江卷)在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,),直线l2的函数表达式为,l1与l2相交于点P.⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a.过点C作CM⊥x轴,垂足是点M.
(1) 填空:直线l1的函数表达式是 ,交点P的坐标是 ,∠FPB的度数是 ;
(2) 当⊙C和直线l2相切时,请证明点P到直线CM的距离等于⊙C的半径R,并写出R=时a的值.
2
1
3
4
1
2
3
-1
-2
-3
-1
y
x
O
A
B
E
F
P
l1
l2
C
(3) 当⊙C和直线l2不相离时,已知⊙C的半径R=,记四边形NMOB的面积为S(其中点N是直线CM与l2的交点).S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由.
10、(山东济南课改卷)如图1,已知中,,.过点作,且,连接交于点.
(1)求的长;
(2)以点为圆心,为半径作,试判断与是否相切,并说明理由;
A
B
C
P
E
E
A
B
C
P
D
图1
图2
(3)如图2,过点作,垂足为.以点为圆心,为半径作;以点为圆心,为半径作.若和的大小是可变化的,并且在变化过程中保持和相切,且使点在的内部,点在的外部,求和的变化范围.
11、(江苏宿迁课改卷)设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系
公共点的个数
d>a+r
图①
d=a+r
a-r<d<a+r
d=a-r
d<a-r
所以,当r<a时,⊙O与正方形的公共点的个数可能有 个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系
图②
公共点的个数
d>a+r
d=a+r
a≤d<a+r
d<a
所以,当r=a时,⊙O与正方形的公共点个数可能有 个;
图③
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a;
(4)就r>a的情形,请你仿照“当……时,⊙O与正方形的公共点个数可能有
个”的形式,至少给出一个关于“⊙O与正方形的公共点个数”的正确结论.
43、(山东枣庄课改卷)半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC :CA=4 : 3,点P在上运动,过点C作CP的垂线,与PB的延长线交于点O
(1)当点P与点C关于AB对称时,求CQ的长;
(2)当点P运动到的中点时,求CQ的长;
(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.
相关文档
- 中考数学专题复习练习:相似三角形的2021-11-1119页
- 中考数学专题复习练习:用函数的观点2021-11-113页
- 中考数学专题复习练习:平面直角坐标2021-11-119页
- 中考数学专题复习练习:二次根式的除2021-11-1113页
- 中考数学专题复习练习:实数2021-11-1115页
- 中考数学专题复习练习:反比例函数考2021-11-113页
- 中考数学专题复习练习:解方程去分母2021-11-1115页
- 中考数学专题复习练习:有理数的加减2021-11-1116页
- 中考数学专题复习练习:《整式》单元2021-11-113页
- 中考数学专题复习练习:二次根式的乘2021-11-1110页