- 144.00 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
旋转做客坐标系
一、求旋转后点的坐标
例1(2016·贺州)如图1,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么
A(﹣2,5)的对应点A′的坐标是( )
A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)
解析:∵线段AB绕点O顺时针旋转90°得到线段A′B′,
∴AB=A′B′,∠AOA′=90°,AO=A′O.
如图1,过点A作AC⊥y轴于C,过点A′作A′C′⊥x轴于C′.
∴∠ACO=∠A′C′O=90°.
∵∠COC′=90°,
∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,图1
即∠AOC=∠A′OC′.
∴△ACO≌△A′C′O.
∴AC=A′C′,CO=C′O.
∵A(﹣2,5),
∴AC=2,CO=5.
∴A′C′=2,OC′=5.
∴点A′的坐标是(5,2).
故选B.
点评:在平面直角坐标系xOy中,已知点A(m,n),将OA绕坐标原点O逆时针(顺时针)旋转90°至OA′,点A′的横、纵坐标的绝对值分别是| n |,| m |,再根据旋转后点A′所在的象限点的坐标特征,确定横、纵坐标的符号,最终确定点A′的坐标.
二、 确定旋转中心
例2(2016·宁夏)如图2,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为 .
解析:观察图2可知,△ABC和△A′B′C′中,点A的对应点为点A′,点B的对应点为点B′,点C的对应点为点C′.图2中,我们无法直观判断旋转中心的位置,此时,可以通过画图找出旋转中心,如图2,连接AA′,CC′,AA′,CC′的垂直平分线都过点(1,-1),因而旋转中心点P的坐标是(1,-1).
点评:根据已知图形和旋转后所得的图形确定旋转中心的位置,一般先看这两个图形是否有公共顶点,当两个图形具有公共顶点时,再判断公共顶点是否为旋转中心;当公共顶点不是旋转中心或两个图形没有公共顶点时,可按下列步骤确定旋转中心:(1)找出旋转前后的图形的对应点;(2)连接两对对应点,得到两条线段;(3)分别作这两条线段的垂直平分线,两条垂直平分线的交点即为旋转中心.
三、求四边形面积
2
例3(2016·攀枝花)如图3,在平面直角坐标系中,Rt△ABC的三个顶点分别是
A(﹣3,1),B(0,3),C(0,1)
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.
分析:(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;
(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.
解:(1)如图3,△A1B1C1为所作,
(2)四边形AB1A1B的面积为×6×4=12.
图3
点评:正确作出图形是解题的关键,求面积时一定要注意结合图形和网格的特征.
2
相关文档
- 初中语文PPT教学课件:9 故乡(人教版2021-11-1123页
- 2020届初中物理章节复习 第9章 压2021-11-1118页
- 2020届初中物理章节复习 第17章 欧2021-11-1130页
- 初中数学中考复习课件章节考点专题2021-11-1119页
- 2020届初中物理章节复习 第18章 电2021-11-1131页
- 2020年济南各区县初中学考语文12021-11-1157页
- 2020届初中物理章节复习 第15章 电2021-11-114页
- 初中数学中考复习课件章节考点专题2021-11-1154页
- 2013年上海市初中毕业生统一学业考2021-11-116页
- 初中数学中考复习课件章节考点专题2021-11-1120页