- 714.00 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
考点跟踪突破
22
平行四边形
一、选择题
(
每小题
6
分
,
共
30
分
)
1
.
(
2014
·
衡阳
)
若一个多边形的内角和是
900°
,
则这个多边形的边数为
(
)
A
.
五
B
.六
C
.七
D
.八
C
2
.
(
2014
·
益阳
)
如图,
平行四边形
ABCD
中
,
点
E
,
F
是对角线
BD
上的两点
,
如果添加一个条件使
△
ABE
≌△
CDF
,
则添加的条件不能是
( )
A
.
AE
=
CF
B
.
BE
=
FD
C
.
BF
=
DE
D
.
∠
1
=
∠
2
A
3
.
(
2014
·
长沙
)
平行四边形的对角线一定具有的性质是
(
)
A
.
相等
B
.互相平分
C
.
互相垂直
D
.互相垂直且相等
B
4
.
(
2014·
枣庄
)
如图
,
△
ABC
中
,
AB
=
4
,
AC
=
3
,
AD
,
AE
分别是其角平分线和中线
,
过点
C
作
CG
⊥
AD
于点
F
,
交
AB
于点
G
,
连接
EF
,
则线段
EF
的长为
(
)
A
.
1
2
B
.
1
C
.
7
2
D
.
7
A
5
.
在面积为
15
的平行四边形
ABCD
中
,
过点
A
作
AE
⊥
直线
BC
于点
E
,
作
AF
⊥
直线
CD
于点
F
,
若
AB
=
5
,
BC
=
6
,
则
CE
+
CF
的值为
(
)
A
.
11
+
11
3
2
B
.
11
-
11
3
2
C
.
11
+
11
3
2
或
11
-
11
3
2
D
.
11
+
11
3
2
或
1
+
3
2
C
二、填空题
(
每小题
6
分
,
共
30
分
)
6
.
(
2014
·
梅州
)
内角和与外角和相等的多边形的边数为
____
.
7
.
(
2013
·
滨州
)
在
▱
ABCD
中
,
点
O
是对角线
AC
,
BD
的交点
,
点
E
是边
CD
的中点
,
且
AB
=
6
,
BC
=
10
,
则
OE
=
____
.
四
5
8
.
(
2013
·
江西
)
如图
,
▱
ABCD
与
▱
DCFE
的周长相等
,
且
∠
BAD
=
60°
,
∠
F
=
110°
,
则
∠
DAE
的度数为
.
25°
9
.
(
2014·
福州
)
如图
,
在
Rt
△
ABC
中
,
∠
ACB
=
90
°
,
点
D
,
E
分别是边
AB
,
AC
的中点
,
延长
BC
到点
F
,
使
CF
=
1
2
BC.
若
AB
=
10
,
则
EF
的长是
__
__
.
5
10
.
(
2014·
襄阳
)
在
?
ABCD
中
,
BC
边上的高为
4
,
AB
=
5
,
AC
=
2
5
,
则
?
ABCD
的周长等于
__
__
.
12
或
20
三、解答题
(
共
40
分
)
11
.
(10
分
)
(
2013
·
泸州
)
如图
,
已知
▱
ABCD
中
,
F
是
BC
边的中点
,
连接
DF
并延长
,
交
AB
的延长线于点
E.
求证:
AB
=
BE.
解:证明:
∵
F
是
BC
边的中点
,
∴
BF
=
CF
,
∵
四边形
ABCD
是平行四边形
,
∴
AB
=
DC
,
AB
∥
CD
,
∴∠
C
=
∠
FBE
,
∠
CDF
=
∠
E
,
∵
在
△
CDF
和
△
BEF
中
î
ï
í
ï
ì
∠
C
=
∠
FBE
,
∠
CDF
=
∠
E
,
CF
=
BF
,
∴△
CDF
≌△
BEF
(
AAS
)
,
∴
BE
=
DC
,
∵
AB
=
DC
,
∴
AB
=
BE
12
.
(10
分
)
(
2014
·
凉山州
)
如图
,
分别以
Rt
△
ABC
的直角边
AC
及斜边
AB
向外作等边
△
ACD
,
等边
△
ABE.
已知
∠
BAC
=
30°
,
EF
⊥
AB
,
垂足为点
F
,
连接
DF.
(1)
试说明
AC
=
EF
;
(2)
求证:四边形
ADFE
是平行四边形.
∵△
ACD
是等边三角形
,
∴∠
DAC
=
60°
,
AC
=
AD
,
∴∠
DAB
=
∠
DAC
+
∠
BAC
=
90°
,
∴
EF
∥
AD
,
∵
AC
=
EF
,
AC
=
AD
,
∴
EF
=
AD
,
∴
四边形
ADFE
是平行四边形
13
.
(10
分
)
(
2012
·
孝感
)
我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图
,
在四边形
ABCD
中
,
点
E
,
F
,
G
,
H
分别是边
AB
,
BC
,
CD
,
DA
的中点
,
依次连接各边中点得到的中点四边形
EFGH.
(1)
这个中点四边形
EFGH
的形状是
;
平行四边形
(2)
请证明你的结论.
14
.
(10
分
)
(
2013
·
莱芜
)
如图
,
在
Rt
△
ABC
中
,
∠
C
=
90°
,
以
AC
为一边向外作等边三角形
ACD
,
点
E
为
AB
的中点
,
连接
DE.
(1)
证明:
DE
∥
CB
;
(2)
探索
AC
与
AB
满足怎样的数量关系时
,
四边形
DCBE
是平行四边形.
相关文档
- 江西专版2020中考数学复习方案第八2021-11-1151页
- 呼和浩特专版2020中考数学复习方案2021-11-117页
- 呼和浩特专版2020中考数学复习方案2021-11-1110页
- 呼和浩特专版2020中考数学复习方案2021-11-1111页
- (呼和浩特专版)中考数学复习方案:统计2021-11-1155页
- 中考数学复习专题十三:函数、方程、2021-11-1111页
- 鄂尔多斯专版2020中考数学复习方案2021-11-119页
- 江西专版2020中考数学复习方案第七2021-11-117页
- 2013年中考数学复习专题讲座5:数学2021-11-1121页
- 2020年重庆市巴蜀实验中学中考数学2021-11-1120页