• 25.73 KB
  • 2022-02-10 发布

小升初数学重点知识体系归纳汇总

  • 24页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
小升初数学重点知识体系归纳汇总 常用的数量关系式 1、 每份数×份数=总数    总数÷每份数=份数   总数÷份数=每份数   2、1倍数×倍数=几倍数  几倍数÷1倍数=倍数  几倍数÷倍数=1倍数   3、速度×时间=路程    路程÷速度=时间    路程÷时间=速度   4、单价×数量=总价    总价÷单价=数量    总价÷数量=单价   5、工作效率×工作时间=工作总量      工作总量÷工作效率=工作时间      工作总量÷工作时间=工作效率   6、加数+加数=和      和-一个加数=另一个加数   7、被减数-减数=差     被减数-差=减数    差+减数=被减数   8、因数×因数=积      积÷一个因数=另一个因数   9、被除数÷除数=商    被除数÷商=除数    商×除数=被除数 小学数学图形计算公式 1、 正方形 (C:周长   S:面积   a:边长 )   周长=边长×4     C=4a   面积=边长×边长   S=a×a   2、正方体 (V:体积   a:棱长 )   表面积=棱长×棱长×6   S表=a×a×6   体积=棱长×棱长×棱长  V=a×a×a   3、长方形( C:周长   S:面积   a:边长 )   周长=(长+宽)×2   C=2(a+b)   面积=长×宽   S=ab   4、长方体 (V:体积   s:面积   a:长   b: 宽   h:高)   (1)表面积(长×宽+长×高+宽×高)×2   S=2(ab+ah+bh) ‎ ‎  (2)体积=长×宽×高   V=abh   5、三角形 (s:面积   a:底   h:高)   面积=底×高÷2  s=ah÷2   三角形高=面积 ×2÷底   三角形底=面积 ×2÷高 6、 平行四边形 (s:面积   a:底   h:高)   面积=底×高   s=ah   7、梯形 (s:面积   a:上底   b:下底   h:高)   面积=(上底+下底)×高÷2    s=(a+b)× h÷2   8、圆形 (S:面积   C:周长   л  d=直径   r=半径)   (1)周长=直径×л=2×л×半径   C=лd=2лr   (2)面积=半径×半径×л ‎ ‎  9、圆柱体 (v:体积   h:高   s:底面积   r:底面半径   c:底面周长)   (1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2   (3)体积=底面积×高     (4)体积=侧面积÷2×半径   10、圆锥体 (v:体积   h:高   s:底面积   r:底面半径)   体积=底面积×高÷3‎ ‎11、总数÷总份数=平均数 ‎  12、和差问题的公式   (和+差)÷2=大数      (和-差)÷2=小数   13、和倍问题   和÷(倍数-1)=小数     小数×倍数=大数 (或者 和-小数=大数)   14、差倍问题   差÷(倍数-1)=小数    小数×倍数=大数 (或 小数+差=大数) ‎ ‎  15、相遇问题   相遇路程=速度和×相遇时间   相遇时间=相遇路程÷速度和   速度和=相遇路程÷相遇时间 ‎16、浓度问题   溶质的重量+溶剂的重量=溶液的重量   溶质的重量÷溶液的重量×100%=浓度   溶液的重量×浓度=溶质的重量   溶质的重量÷浓度=溶液的重量   17、利润与折扣问题   利润=售出价-成本   利润率=利润÷成本×100%=(售出价÷成本-1)×100% ‎ ‎   涨跌金额=本金×涨跌百分比   利息=本金×利率×时间   税后利息=本金×利率×时间×(1-20%)‎ 常用单位换算 长度单位换算   1千米=1000米 1米=10分米  1分米=10厘米 1米=100厘米   1厘米=10毫米   面积单位换算   1平方千米=100公顷   1公顷=10000平方米   1平方米=100平方分米   1平方分米=100平方厘米   1平方厘米=100平方毫米   体(容)积单位换算   1立方米=1000立方分米    1立方分米=1000立方厘米    1立方分米=1升 ‎ ‎  1立方厘米=1毫升    1立方米=1000升   重量单位换算   1吨=1000 千克   1千克=1000克   1千克=1公斤   人民币单位换算   1元=10角   1角=10分  1元=100分   时间单位换算   1世纪=100年  1年=12月  大月(31天)有:135781012月  小月(30天)的有:46911月   平年2月28天, 闰年2月29天  平年全年365天, 闰年全年366天  1日=24小时   1时=60分   1分=60秒   1时=3600秒 整数的概念 ‎1 整数的意义   自然数和0都是整数。   2 自然数   我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。   一个物体也没有,用0表示。0也是自然数。   3计数单位   一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。   每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。   4 数位   计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 ‎ ‎  5数的整除   整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。   如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。   因为35能被7整除,所以35是7的倍数,7是35的约数。   一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。   一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。   个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。   个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。‎ 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。 ‎ ‎   一个数各位数上的和能被9整除,这个数就能被9整除。   能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。   一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。   一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。   能被2整除的数叫做偶数。   不能被2整除的数叫做奇数。   0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。   一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。   一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 ‎ 4、6、8、9、12都是合数。   1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。   每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。   把一个合数用质因数相乘的形式表示出来,叫做分解质因数。   例如把28分解质因数   几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。‎ 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:   1和任何自然数互质。   相邻的两个自然数互质。   两个不同的质数互质。 ‎ ‎   当合数不是质数的倍数时,这个合数和这个质数互质。   两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。   如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。   如果两个数是互质数,它们的最大公约数就是1。   几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……   3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。   如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。   如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。   几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 ‎ ‎  ‎ 小数的概念 ‎1 小数的意义   把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。   一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……   一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。   在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位"十分之一"和整数部分的最低单位"一"之间的进率也是10。   2小数的分类   纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。   带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。   有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、‎ ‎ 0.23 都是有限小数。   无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……   无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏   循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……   一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是" 9 " , 0.5454 ……的循环节是" 54 " 。   纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……   混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……   写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 ‎ 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作  0.5302302 …… 简写作  。‎ 分数的概念 分数   1 分数的意义   把单位"1"平均分成若干份,表示这样的一份或者几份的数叫做分数。   在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位"1"平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。   把单位"1"平均分成若干份,表示其中的一份的数,叫做分数单位。   2 分数的分类   真分数:分子比分母小的分数叫做真分数。真分数小于1。   假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。   带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 ‎ ‎  3 约分和通分   把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。   分子分母是互质数的分数,叫做最简分数。   把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。   百分数   1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。‎ 数的读法和写法 1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个"亿"或"万"字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。   2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。   3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作"点",小数部分从左向右顺次读出每一位数位上的数字。 ‎ ‎  4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。   5. 分数的读法:读分数时,先读分母再读"分之"然后读分子,分子和分母按照整数的读法来读。   6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。   7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。   8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号"%"来表示。‎ 数的改写 一个较大的多位数,为了读写方便,常常把它改写成用"万"或"亿"作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。   1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。 ‎ ‎  2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。   3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。   4. 大小比较   1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。   2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……   3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。‎ 数的互化与整除 数的互化 ‎ ‎  1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。   2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。   3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。   4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。   5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。   6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。   7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。   数的整除   1.‎ ‎ 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。   2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。   3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。   4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质;  当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。‎ 约分和通分 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。   通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。‎ 数的性质和规律 (一) 商不变的规律 ‎ ‎  商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。   (二)小数的性质   小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。   (三)小数点位置的移动引起小数大小的变化   1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……   2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……   3. 小数点向左移或者向右移位数不够时,要用"0"补足位。   (四)分数的基本性质   分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。   (五)分数与除法的关系 ‎ ‎  1. 被除数÷除数=  被除数/除数   2. 因为零不能作除数,所以分数的分母不能为零。   3. 被除数 相当于分子,除数相当于分母。‎ 整数四则运算 ‎1整数加法:   把两个数合并成一个数的运算叫做加法。   在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。   加数+加数=和   一个加数=和-另一个加数   2整数减法:   已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。   在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。 ‎ ‎  加法和减法互为逆运算。   3整数乘法:   求几个相同加数的和的简便运算叫做乘法。   在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。   在乘法里,0和任何数相乘都得0.   1和任何数相乘都的任何数。   一个因数× 一个因数 =积      一个因数=积÷另一个因数   4  整数除法:   已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。   在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。   乘法和除法互为逆运算。   在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。 ‎ ‎   被除数÷除数=商  除数=被除数÷商  被除数=商×除数