• 532.00 KB
  • 2021-05-10 发布

德州市2011年初中学业考试数学试卷及答案

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
绝密★启用前 试卷类型:A ‎ 德州市二○一一年初中学业考试 ‎ 数 学 试 题 ‎ 注意事项: ‎ ‎1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,24分;第Ⅱ卷8页为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.‎ ‎2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回. ‎ ‎3.第Ⅰ卷每题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案. ‎ 第Ⅰ卷(选择题 共24分)‎ 一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. ‎ ‎1.下列计算正确的是 ‎(A) (B) ‎ ‎(C) (D)‎ ‎2.一个几何体的主视图、左视图、俯视图完全相同,它一定是 ‎ ‎(A)圆柱 (B)圆锥 ‎ ‎(C)球体 (D)长方体 ‎ ‎3.温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是 ‎(A)3.6×107 (B)3.6×106 (C)36×106 (D) 0.36×108‎ l1‎ l2‎ ‎1‎ ‎2‎ ‎3‎ ‎4.如图,直线l1∥l2, ∠1=40°,∠2=75°,则∠3等于 ‎(A)55° (B) 60° ‎ ‎(C)65° (D) 70°‎ ‎5.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:‎ 对这两名运动员的成绩进行比较,下列四个结论中,不正确的是 ‎(A)甲运动员得分的极差大于乙运动员得分的极差 ‎(B)甲运动员得分的的中位数大于乙运动员得分的的中位数 第6题图 ‎(C)甲运动员的得分平均数大于乙运动员的得分平均数 ‎(D)甲运动员的成绩比乙运动员的成绩稳定 ‎6.已知函数(其中)的图象 y x ‎1‎ ‎1‎ O ‎(A)‎ y x ‎1‎ ‎-1‎ O ‎(B)‎ y x ‎-1‎ ‎-1‎ O ‎(C)‎ ‎1‎ ‎-1‎ x y O ‎(D)‎ 如下面右图所示,则函数的图象可能正确的是 ‎ ‎ ‎7.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为,,,,则下列关系中正确的是 ‎(A)>> (B)>> (C)>> (D)>>‎ 图1‎ 图2‎ 图3‎ ‎……‎ ‎8.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n个图形的周长是 ‎(A) (B) (C) (D)‎ 绝密★启用前 试卷类型:A ‎ 德州市二○一一年初中学业考试 数 学 试 题 ‎ 第Ⅱ卷(非选择题 共96分)‎ 注意事项:‎ ‎ 1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.‎ ‎2.答卷前将密封线内的项目填写清楚.‎ 题号 二 三 总分 ‎17‎ ‎18‎ ‎19‎ ‎20‎ ‎21‎ ‎22‎ ‎23‎ 得分 得 分 评 卷 人 A B C D E F 第10题图 二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.‎ ‎9.点P(1,2)关于原点的对称点P′的坐标为___________.‎ ‎10.如图,D,E,F分别为△ABC三边的中点,‎ 则图中平行四边形的个数为___________.‎ ‎11.母线长为2,底面圆的半径为1的圆锥的侧面积为___________.‎ ‎12.当时,=_____________.‎ ‎13.下列命题中,其逆命题成立的是______________.(只填写序号)‎ ‎①同旁内角互补,两直线平行;‎ ‎②如果两个角是直角,那么它们相等;‎ ‎③如果两个实数相等,那么它们的平方相等;‎ ‎④如果三角形的三边长a,b,c满足 ‎,那么这个三角形是直角三角形.‎ ‎14.若,是方程的两个根,则=__________.‎ ‎15.在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是_____________.‎ 第一次操作 第二次操作 ‎16.长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为 正方形,则操作终止.当n=3时,‎ a的值为_____________.‎ 三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. ‎ 得 分 评 卷 人 ‎17. (本题满分6分) ‎ 解不等式组,并把解集在数轴上表示出来 得 分 评 卷 人 ‎18. (本题满分8分)‎ ‎2011年5月9日至14日,德州市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表: ‎ 等级 成绩(分)‎ 频数(人数)‎ 频率 A ‎90~100‎ ‎19‎ ‎0.38‎ B ‎75~89‎ m x C ‎60~74‎ n y D ‎60以下 ‎3‎ ‎0.06‎ 合计 ‎50‎ ‎1.00‎ D C A A B 40%‎ 请你根据以上图表提供的信息,解答下列问题:‎ ‎(1) m= ,n= ,x= ,y= ;‎ ‎(2)在扇形图中,C等级所对应的圆心角是 度;‎ ‎(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人? ‎ ‎ ‎ 得 分 评 卷 人 ‎19.(本题满分8分)‎ 如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.‎ ‎(1)求证AD=AE;(2) 连接OA,BC,试判断直线OA,BC的关系并说明理由.‎ A B C E D O 得 分 评 卷 人 ‎20. (本题满分10分)‎ A C D B E F G 某兴趣小组用高为1.2米的仪器测量建筑物CD的高度.如示意图,由距CD一定距离的A处用仪器观察建筑物顶部D的仰角为,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为.测得A,B之间的距离为4米,,,试求建筑物CD的高度.‎ ‎ ‎ 得 分 评 卷 人 ‎ 21. (本题满分10分) ‎ 为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.‎ ‎(1)甲、乙两个工程队单独完成各需多少天?‎ ‎(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.‎ A 得 分 评 卷 人 ‎22. (本题满分10分) ‎ ‎●观察计算 当,时, 与的大小关系是_________________.‎ 当,时, 与的大小关系是_________________.‎ ‎●探究证明 A B C O D 如图所示,为圆O的内接三角形,为直径,过C作于D,设,BD=b.‎ ‎(1)分别用表示线段OC,CD;‎ ‎(2)探求OC与CD表达式之间存在的关系 ‎(用含a,b的式子表示).‎ ‎●归纳结论 根据上面的观察计算、探究证明,你能得出与的大小关系是:_________________________.‎ ‎●实践应用 要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.‎ 得 分 评 卷 人 ‎23. (本题满分12分) ‎ 在直角坐标系xoy中,已知点P是反比例函数图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.‎ ‎(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.‎ ‎(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:‎ ‎①求出点A,B,C的坐标.‎ ‎②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.‎ A P x y K O 图1‎ 德州市二○一一年初中学业考试 数学试题参考解答及评分意见 评卷说明:‎ ‎1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.‎ ‎2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.‎ ‎3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.‎ 一、选择题:(本大题共8小题,每小题3分,共24分)‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ 答案 B C A C D D B C 二、填空题:(本大题共8小题,每小题4分,共32分)‎ ‎9.(-1,-2); 10.3;11.;12.;13.① ④;14.3; 15. ; 16.或. ‎ 三、解答题:(本大题共7小题, 共64分)‎ ‎17.(本小题满分7分)‎ ‎②‎ ‎①‎ 解:‎ 解不等式①,得 x1 ----------2分 解不等式②,得 x<4. ‎ 所以,不等式组的解集为:‎ ‎1x<4 ---------------------------4分 在数轴上表示为:‎ x ‎0‎ ‎4‎ ‎1‎ ‎--------------------------6分 ‎18.(本题满分8分)‎ 解:(1)20, 8, 0.4, 0.16 -----------------------------4分 ‎(2)57.6 ----------------------------6分 ‎(3)由上表可知达到优秀和良好的共有19+20=39人,‎ 人. -----------------------------8分 ‎19.(本题满分8分)‎ A B E C D O ‎(1)证明:在△ACD与△ABE中,‎ ‎∵∠A=∠A,∠ADC=∠AEB=90°,AB=AC,‎ ‎∴ △ACD≌△ABE.…………………… 3分 ‎∴ AD=AE. ……………………4分 ‎(2) 互相垂直 ……………………5分 在Rt△ADO与△AEO中,‎ ‎∵OA=OA,AD=AE,‎ ‎∴ △ADO≌△AEO. ……………………………………6分 ‎∴ ∠DAO=∠EAO.‎ 即OA是∠BAC的平分线. ………………………………………7分 ‎ 又∵AB=AC,‎ ‎∴ OA⊥BC. ………………………………………8分 ‎20.(本题满分10分)‎ 解:设建筑物CD与EF的延长线交于点G,DG=x米. …………1分 在△中,,即. …………2分 A C D B E F G 在△中,,即. …………3分 ‎∴,.‎ ‎∴ . ………5分 ‎∴. ………6分 解方程得:=19.2. ………8分 ‎∴ . ‎ 答:建筑物高为20.4米. ………10分 ‎21.(本题满分10分)‎ 解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需(x+25)天.………………………………1分 根据题意得:‎ ‎ . ………………………………3分 方程两边同乘以x(x+25),得 30(x+25)+30x= x(x+25),‎ ‎ 即 x2-35x-750=0. ‎ 解之,得x1=50,x2=-15. ………………………………5分 ‎ 经检验,x1=50,x2=-15都是原方程的解.‎ 但x2=-15不符合题意,应舍去. ………………………………6分 ‎∴ 当x=50时,x+25=75.‎ 答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天. ……………………7分 ‎(2)此问题只要设计出符合条件的一种方案即可.‎ ‎ 方案一:‎ 由甲工程队单独完成.………………………………8分 所需费用为:2500×50=125000(元).………………………………10分 方案二:‎ ‎ 甲乙两队合作完成. ‎ 所需费用为:(2500+2000)×30=135000(元).……………………10分 其它方案略.‎ ‎22.(本题满分10分)‎ ‎●观察计算:>, =. …………………2分 A B C O D ‎●探究证明:‎ ‎(1),‎ ‎∴…………………3分 AB为⊙O直径,‎ ‎∴.‎ ‎,,‎ ‎ ∴∠A=∠BCD.‎ ‎∴△∽△. …………………4分 ‎∴.‎ 即,‎ ‎∴. …………………5分 ‎(2)当时,, =;‎ 时,, >.…………………6分 ‎●结论归纳: . ………………7分 ‎●实践应用 设长方形一边长为米,则另一边长为米,设镜框周长为l米,则 ‎ ≥ . ……………9分 当,即(米)时,镜框周长最小.‎ 此时四边形为正方形时,周长最小为4 米. ………………10分 图1‎ A P x y K O ‎23.(本题满分12分)‎ 解:(1)∵⊙P分别与两坐标轴相切,‎ ‎ ∴ PA⊥OA,PK⊥OK.‎ ‎ ∴∠PAO=∠OKP=90°.‎ ‎ 又∵∠AOK=90°,‎ ‎ ∴ ∠PAO=∠OKP=∠AOK=90°.‎ ‎ ∴四边形OKPA是矩形.‎ ‎ 又∵OA=OK,‎ ‎ ∴四边形OKPA是正方形.……………………2分 O A P x y B C 图2‎ G M ‎(2)①连接PB,设点P的横坐标为x,则其纵坐标为.‎ 过点P作PG⊥BC于G.‎ ‎∵四边形ABCP为菱形,‎ ‎∴BC=PA=PB=PC.‎ ‎∴△PBC为等边三角形.‎ 在Rt△PBG中,∠PBG=60°,PB=PA=x,‎ PG=.‎ sin∠PBG=,即.‎ 解之得:x=±2(负值舍去).‎ ‎∴ PG=,PA=BC=2.……………………4分 易知四边形OGPA是矩形,PA=OG=2,BG=CG=1,‎ ‎∴OB=OG-BG=1,OC=OG+GC=3.‎ ‎∴ A(0,),B(1,0) C(3,0).……………………6分 设二次函数解析式为:y=ax2+bx+c.‎ 据题意得:‎ 解之得:a=, b=, c=.‎ ‎∴二次函数关系式为:.……………………9分 ‎②解法一:设直线BP的解析式为:y=ux+v,据题意得:‎ ‎ ‎ 解之得:u=, v=.‎ ‎∴直线BP的解析式为:.‎ 过点A作直线AM∥PB,则可得直线AM的解析式为:.‎ 解方程组:‎ 得: ; .‎ 过点C作直线CM∥PB,则可设直线CM的解析式为:.‎ ‎ ∴0=. ‎ ‎ ∴.‎ ‎∴直线CM的解析式为:.‎ 解方程组:‎ 得: ; .‎ 综上可知,满足条件的M的坐标有四个,‎ 分别为:(0,),(3,0),(4,),(7,).…………………12分 解法二:∵,‎ ‎∴A(0,),C(3,0)显然满足条件.‎ 延长AP交抛物线于点M,由抛物线与圆的轴对称性可知,PM=PA.‎ 又∵AM∥BC,‎ ‎∴.‎ ‎∴点M的纵坐标为.‎ 又点M的横坐标为AM=PA+PM=2+2=4.‎ ‎∴点M(4,)符合要求.‎ 点(7,)的求法同解法一.‎ 综上可知,满足条件的M的坐标有四个,‎ 分别为:(0,),(3,0),(4,),(7,).…………………12分 解法三:延长AP交抛物线于点M,由抛物线与圆的轴对称性可知,PM=PA.‎ 又∵AM∥BC,‎ ‎∴.‎ ‎∴点M的纵坐标为.‎ 即.‎ 解得:(舍),.‎ ‎∴点M的坐标为(4,).‎ 点(7,)的求法同解法一.‎ 综上可知,满足条件的M的坐标有四个,‎ 分别为:(0,),(3,0),(4,),(7,).…………………12分 窗体顶部