• 188.00 KB
  • 2021-05-10 发布

2018中考解直角三角形真题

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
解直角三角形 参考答案与试题解析 ‎ ‎ 一.选择题(共9小题)‎ ‎1.(2018•孝感)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sinA等于(  )‎ A. B. C. D.‎ ‎【分析】先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.‎ ‎【解答】解:在Rt△ABC中,∵AB=10、AC=8,‎ ‎∴BC===6,‎ ‎∴sinA===,‎ 故选:A.‎ ‎ ‎ ‎2.(2018•绵阳)一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(  )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414)‎ A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里 ‎【分析】根据题意画出图形,结合图形知∠BAC=30°、∠ACB=15°,作BD⊥AC于点D,以点B为顶点、BC为边,在△ABC内部作∠CBE=∠ACB=15°,设BD=x,则AB=BE=CE=2x、AD=DE=x,据此得出AC=2x+2x,根据题意列出方程,求解可得.‎ ‎【解答】解:如图所示,‎ 由题意知,∠BAC=30°、∠ACB=15°,‎ 作BD⊥AC于点D,以点B为顶点、BC为边,在△ABC内部作∠CBE=∠ACB=15°,‎ 则∠BED=30°,BE=CE,‎ 设BD=x,‎ 则AB=BE=CE=2x,AD=DE=x,‎ ‎∴AC=AD+DE+CE=2x+2x,‎ ‎∵AC=30,‎ ‎∴2x+2x=30,‎ 解得:x=≈5.49,‎ 故选:B.‎ ‎ ‎ ‎3.(2018•重庆)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为(  )(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)‎ A.12.6米 B.13.1米 C.14.7米 D.16.3米 ‎【分析】如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CDJ中求出CJ、DJ,再根据,tan∠AEM=构建方程即可解决问题;‎ ‎【解答】解:如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.‎ 在Rt△CJD中,==,设CJ=4k,DJ=3k,‎ 则有9k2+16k2=4,‎ ‎∴k=,‎ ‎∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,‎ 在Rt△AEM中,tan∠AEM=,‎ ‎∴1.6=,‎ 解得AB≈13.1(米),‎ 故选:B.‎ ‎ ‎ ‎4.(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为(  )‎ A. B. C. D.‎ ‎【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;‎ ‎【解答】解:在Rt△ABC中,AB=,‎ 在Rt△ACD中,AD=,‎ ‎∴AB:AD=:=,‎ 故选:B.‎ ‎ ‎ ‎5.(2018•威海)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是(  )‎ A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m B.小球距O点水平距离超过4米呈下降趋势 C.小球落地点距O点水平距离为7米 D.斜坡的坡度为1:2‎ ‎【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.‎ ‎【解答】解:当y=7.5时,7.5=4x﹣x2,‎ 整理得x2﹣8x+15=0,‎ 解得,x1=3,x2=5,‎ ‎∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;‎ y=4x﹣x2‎ ‎=﹣(x﹣4)2+8,‎ 则抛物线的对称轴为x=4,‎ ‎∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;‎ ‎,‎ 解得,,,‎ 则小球落地点距O点水平距离为7米,C正确,不符合题意;‎ ‎∵斜坡可以用一次函数y=x刻画,‎ ‎∴斜坡的坡度为1:2,D正确,不符合题意;‎ 故选:A.‎ ‎ ‎ ‎6.(2018•宜昌)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于(  )‎ A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米 ‎【分析】根据正切函数可求小河宽PA的长度.‎ ‎【解答】解:∵PA⊥PB,PC=100米,∠PCA=35°,‎ ‎∴小河宽PA=PCtan∠PCA=100tan35°米.‎ 故选:C.‎ ‎ ‎ ‎7.(2018•重庆)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)(  )‎ A.21.7米 B.22.4米 C.27.4米 D.28.8米 ‎【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题;‎ ‎【解答】解:作BM⊥ED交ED的延长线于M,CN⊥DM于N.‎ 在Rt△CDN中,∵==,设CN=4k,DN=3k,‎ ‎∴CD=10,‎ ‎∴(3k)2+(4k)2=100,‎ ‎∴k=2,‎ ‎∴CN=8,DN=6,‎ ‎∵四边形BMNC是矩形,‎ ‎∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,‎ 在Rt△AEM中,tan24°=,‎ ‎∴0.45=,‎ ‎∴AB=21.7(米),‎ 故选:A.‎ ‎ ‎ ‎8.(2018•淄博)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是(  )‎ A. B. C. D.‎ ‎【分析】先利用正弦的定义得到sinA=0.15,然后利用计算器求锐角α.‎ ‎【解答】解:sinA===0.15,‎ 所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为 故选:A.‎ ‎ ‎ ‎9.(2018•天津)cos30°的值等于(  )‎ A. B. C.1 D.‎ ‎【分析】根据特殊角的三角函数值直接解答即可.‎ ‎【解答】解:cos30°=.‎ 故选:B.‎ ‎ ‎