• 955.00 KB
  • 2021-05-10 发布

中考数学内蒙古包头市中考数学试卷含解析

  • 16页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
内蒙古包头市2017年中考数学试卷 一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.21·cn·jy·com ‎1.计算所得结果是(  )‎ A.﹣2          B.    C.       D.2‎ ‎【答案】D.‎ ‎【解析】‎ 试题分析:==2,故选D.‎ 考点:负整数指数幂.‎ ‎2.若,b是2的相反数,则a+b的值为(  )‎ A.﹣3      B.﹣1      C.﹣1或﹣3      D.1或﹣3‎ ‎【答案】C.‎ ‎【解析】‎ 考点:有理数的乘方;相反数;有理数的加法;分类讨论.‎ ‎3.一组数据5,7,8,10,12,12,44的众数是(  )‎ A.10      B.12      C.14      D.44‎ ‎【答案】B.‎ ‎【解析】‎ 试题分析:这组数据中12出现了2次,次数最多,∴众数为12,故选B.‎ 考点:众数.‎ ‎4.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是(  )‎ A.      B.‎ C.       D.‎ ‎【答案】C.‎ ‎【解析】‎ 考点:几何体的展开图.‎ ‎5.下列说法中正确的是(  )‎ A.8的立方根是±2‎ B.是一个最简二次根式 C.函数的自变量x的取值范围是x>1‎ D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称 ‎【答案】D.‎ ‎【解析】‎ 试题分析:A.8的立方根是2,故A不符合题意;‎ B.不是最简二次根式,故B不符合题意;‎ C.函数的自变量x的取值范围是x≠1,故C不符合题意;‎ D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D符合题意;‎ 故选D.‎ 考点:最简二次根式;立方根;函数自变量的取值范围;关于x轴、y轴对称的点的坐标.‎ ‎6.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为(  )‎ A.2cm      B.4cm      C.6cm      D.8cm ‎【答案】A.‎ ‎【解析】‎ 试题分析:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;21教育网 若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.2-1-c-n-j-y 考点:等腰三角形的性质;三角形三边关系;分类讨论.‎ ‎7.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为(  )【出处:21教育名师】‎ A.    B.    C.     D.‎ ‎【答案】A.‎ ‎【解析】‎ 考点:概率公式.‎ ‎8.若关于x的不等式的解集为x<1,则关于x的一元二次方程根的情况是(  )‎ A.有两个相等的实数根      B.有两个不相等的实数根 C.无实数根           D.无法确定 ‎【答案】C.‎ ‎【解析】‎ 试题分析:解不等式得x<,而不等式的解集为x<1,所以=1,解得a=0,又因为△==﹣4,所以关于x的一元二次方程没有实数根.故选C.‎ 考点:根的判别式;不等式的解集.‎ ‎9.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=,则图中阴影部分的面积为(  )‎ A.π+1      B.π+2      C.2π+2      D.4π+1‎ ‎【答案】B.‎ ‎【解析】‎ 考点:扇形面积的计算;等腰三角形的性质;圆周角定理.‎ ‎10.已知下列命题:‎ ‎①若>1,则a>b;‎ ‎②若a+b=0,则|a|=|b|;‎ ‎③等边三角形的三个内角都相等;‎ ‎④底角相等的两个等腰三角形全等.‎ 其中原命题与逆命题均为真命题的个数是(  )‎ A.1个      B.2个      C.3个      D.4个 ‎【答案】A.‎ ‎【解析】‎ 试题分析:∵当b<0时,如果>1,那么a<b,∴①错误;‎ ‎∵若a+b=0,则|a|=|b|正确,但是若|a|=|b|,则a+b=0错误,∴②错误;‎ ‎∵等边三角形的三个内角都相等,正确,逆命题也正确,∴③正确;‎ ‎∵底角相等的两个等腰三角形不一定全等,∴④错误;‎ 其中原命题与逆命题均为真命题的个数是1个,故选A.‎ 考点:命题与定理.‎ ‎11.已知一次函数,二次函数,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为与,则下列关系正确的是(  )21cnjy.com A.     B.    C.     D.‎ ‎【答案】D.‎ ‎【解析】‎ 考点:二次函数与不等式(组).‎ ‎12.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为(  )2·1·c·n·j·y A.     B.     C.     D.‎ ‎【答案】A.‎ ‎【解析】‎ 试题分析:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的长为.故选A.【来源:21cnj*y.co*m】‎ 考点:相似三角形的判定与性质;勾股定理;角平分线的性质;综合题.‎ 二、填空题:本大题共有8小题,每小题3分,共24分,将答案填在答题纸上 ‎13.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为 .‎ ‎【答案】3×1012.‎ ‎【解析】‎ 试题分析:3万亿=3×1012,故答案为:3×1012.‎ 考点:科学记数法—表示较大的数.‎ ‎14.化简:= .‎ ‎【答案】﹣a﹣1.‎ ‎【解析】‎ ‎15.某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为 cm.‎ ‎【答案】168.‎ ‎【解析】‎ 试题分析:设男生的平均身高为x,根据题意有:(20×163+30x)÷50 =166,解可得x=168(cm).故答案为:168.‎ 考点:加权平均数.‎ ‎16.若关于x、y的二元一次方程组的解是,则的值为 .‎ ‎【答案】1.‎ ‎【解析】‎ 考点:二元一次方程组的解.‎ ‎17.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB= 度.‎ ‎【答案】20.‎ ‎【解析】‎ 试题分析:∵∠BAC=∠BOC,∠ACB=∠AOB,∵∠BOC=2∠AOB,∴∠ACB=∠BAC=20°.故答案为:20.www-2-1-cnjy-com 考点:圆周角定理. ‎ ‎18.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是 .【版权所有:21教育】‎ ‎【答案】.‎ ‎【解析】‎ 考点:矩形的性质;解直角三角形.‎ ‎19.如图,一次函数y=x﹣1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为 .www.21-cn-jy.com ‎【答案】(0,2).‎ ‎【解析】‎ 试题分析:由,解得或,∴A(2,1),B(1,0),设C(0,m),∵BC=AC,∴AC2=BC2,即4+(m﹣1)2=1+m2,∴m=2,故答案为:(0,2).‎ 考点:反比例函数与一次函数的交点问题.‎ ‎20.如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.‎ 下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则S ‎△ABC=2S△ABE.‎ 其中正确的结论是 .(填写所有正确结论的序号)‎ ‎【答案】①②④.‎ ‎【解析】‎ ‎③∵AN=AM,∴△AMN为等腰三角形,所以③不正确;‎ ‎④∵△ACN≌△ABM,∴S△ACN=S△ABM,∵点M、N分别是BE、CD的中点,∴S△ACD=2S△ACN,S△ABE=2S△ABM,∴S△ACD=S△ABE,∵D是AB的中点,∴S△ABC=2S△ACD=2S△ABE,所以④正确;‎ 本题正确的结论有:①②④;故答案为:①②④.‎ 考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质.‎ 三、解答题:本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.‎ ‎21.有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.‎ ‎(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;‎ ‎(2)求两次抽取的卡片上的数字之和为非负数的概率.‎ ‎【答案】)(1);(2).‎ ‎【解析】‎ 试题分析:(1)画出树状图列出所有等可能结果,再找到数字之积为负数的结果数,根据概率公式可得;‎ ‎(2)根据(1)中树状图列出数字之和为非负数的结果数,再根据概率公式求解可得.‎ 试题解析:(1)画树状图如下:‎ 由树状图可知,共有9种等可能结果,其中数字之积为负数的有4种结果,∴两次抽取的卡片上的数字之积为负数的概率为;21·世纪*教育网 ‎(2)在(1)种所列9种等可能结果中,数字之和为非负数的有6种,∴两次抽取的卡片上的数字之和为非负数的概率为=.‎ 考点:列表法与树状图法.‎ ‎22.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.‎ ‎(1)求AD的长;‎ ‎(2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)‎ ‎【答案】(1)6;(2).‎ ‎【解析】‎ ‎(2)∵DE∥BA交AC于点E,DF∥CA交AB于点F,∴四边形AEDF是平行四边形,∵∠EAD=∠ADF=∠DAF,∴AF=DF,∴四边形AEDF是菱形,∴AE=DE=DF=AF,在Rt△CED中,∵∠CDE=∠B=30°,∴DE= =,∴四边形AEDF的周长为.21世纪教育网版权所有 考点:菱形的判定与性质;平行线的性质;含30度角的直角三角形.‎ ‎23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.21*cnjy*com ‎(1)求S与x之间的函数关系式,并写出自变量x的取值范围;‎ ‎(2)设计费能达到24000元吗?为什么?‎ ‎(3)当x是多少米时,设计费最多?最多是多少元?‎ ‎【答案】(1)(0<x<8);(2)能;(3)当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.21*cnjy*com ‎【解析】‎ 试题解析:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=,其中0<x<8,即(0<x<8);‎ ‎(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷200=12(平方米),即=12,解得:x=2或x=6,∴设计费能达到24000元.‎ ‎(3)∵=,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.‎ 考点:二次函数的应用;一元二次方程的应用;二次函数的最值;最值问题.‎ ‎24.如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.‎ ‎(1)求证:AE•EB=CE•ED;‎ ‎(2)若⊙O的半径为3,OE=2BE,,求tan∠OBC的值及DP的长.‎ ‎【答案】(1)证明见解析;(2)tan∠OBC=,.‎ ‎【解析】‎ ‎(2)解:∵⊙O的半径为3,∴OA=OB=OC=3,∵OE=2BE,∴OE=2,BE=1,AE=5,∵,∴设CE=9x,DE=5x,∵AE•EB=CE•ED,∴5×1=9x•5x,解得:x1=,x2=﹣(不合题意舍去),∴CE=9x=3,DE=5x=,过点C作CF⊥AB于F,∵OC=CE=3,∴OF=EF=OE=1,∴BF=2,在Rt△OCF中,∵∠CFO=90°,∴CF2+OF2=OC2,∴CF=,在Rt△CFB中,∵∠CFB=90°,∴tan∠OBC==,∵CF⊥AB于F,∴∠CFB=90°,∵BP是⊙O的切线,AB是⊙O的直径,∴∠EBP=90°,∴∠CFB=∠EBP,在△CFE和△PBE中,∵∠CFB=∠PBE,EF=EF,∠FEC=∠BEP,∴△CFE≌△PBE(ASA),∴EP=CE=3,∴DP=EP﹣ED=3﹣=.21教育名师原创作品 考点:相似三角形的判定与性质;切线的性质;解直角三角形.‎ ‎25.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.‎ ‎(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;‎ ‎(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;‎ ‎(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.‎ ‎【答案】(1)DD′=3,A′F= 4﹣;(2);(3).‎ ‎【解析】‎ ‎(2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;【来源:21·世纪·教育·网】‎ ‎(3)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;‎ 试题解析:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=3.‎ ‎②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=30°,在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.‎ ‎(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2,∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=,同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.‎ ‎(3)如图③中,作FG⊥CB′于G.,∵四边形A′B′CD′是矩形,∴GF=CD′=CD=3,∵S△CEF=•EF•DC=•CE•FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°,∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD•AF,∴AF=,∵S△ACF=•AC•CF=•AF•CD,∴AC•CF=AF•CD=.‎ 考点:相似形综合题;旋转的性质;压轴题.‎ ‎26.如图,在平面直角坐标系中,已知抛物线与x轴交于A(﹣1,0),B(2,0)两点,与y轴交于点C.‎ ‎(1)求该抛物线的解析式;‎ ‎(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.‎ ‎①求n的值;‎ ‎②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;‎ ‎(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点 M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.‎ ‎【答案】(1);(2)①n=﹣2;②△AGF与△CGD全等;(3).‎ ‎【解析】‎ 试题分析:(1)根据抛物线与x轴交于A(﹣1,0),B(2,0)两点,可得抛物线的解析式;‎ ‎(2)①过点E作EE'⊥x轴于E',则EE'∥OC,根据平行线分线段成比例定理,可得BE'=4OE',设点E的坐标为(x,y),则OE'=x,BE'=4x,根据OB=2,可得x的值,再根据直线BC的解析式即可得到E 的坐标,把E的坐标代入直线y=﹣x+n,可得n的值;‎ ‎②根据F(﹣2,0),A(﹣1,0),可得AF=1,再根据点D的坐标为(1,﹣3),点C的坐标为(0,﹣3),可得CD∥x轴,CD=1,再根据∠AFG=∠CDG,∠FAG=∠DCG,即可判定△AGF≌△CGD;‎ ‎(3)根据轴对称的性质得出OH=1=M'N,进而判定四边形OM'NH是平行四边形,再根据四边形OM'NH的面积,求得OP的长,再根据点M的坐标得到PM'的长,Rt△OPM'中,运用勾股定理可得OM'的值,最后根据OM'×d=,即可得到d的值.‎ 试题解析:(1)∵抛物线与x轴交于A(﹣1,0),B(2,0)两点,∴,解得:,∴该抛物线的解析式;‎ 解得:,∴直线BC的解析式为,当x=时,y=﹣,∴E(,﹣),把E的坐标代入直线y=﹣x+n,可得﹣+n=﹣,解得n=﹣2;‎ ‎②△AGF与△CGD全等.理由如下:‎ ‎∵直线EF的解析式为y=﹣x﹣2,∴当y=0时,x=﹣2,∴F(﹣2,0),OF=2,∵A(﹣1,0),∴OA=1,∴AF=2﹣1=1,由,解得:或,∵点D在第四象限,∴点D的坐标为(1,﹣3),∵点C的坐标为(0,﹣3),∴CD∥x轴,CD=1,∴∠AFG=∠CDG,∠FAG=∠DCG,∴△AGF≌△CGD;‎ ‎(3)∵抛物线的对称轴为x= =,直线y=m(m>0)与该抛物线的交点为M,N,∴点M、N 关于直线x=对称,设N(t,m),则M(1﹣t,m),∵点 M关于y轴的对称点为点M',∴M'(t﹣1,m),∴点M'在直线y=m上,∴M'N∥x轴,∴M'N=t﹣(t﹣1)=1,∵H(1,0),∴OH=1=M'N,∴四边形OM'NH是平行四边形,设直线y=m与y轴交于点P,∵四边形OM'NH的面积为,∴OH×OP=1×m=,即m=,∴OP=,当=时,解得x1=﹣,x2=,∴点M的坐标为(﹣,),∴M'(,),即PM'=,∴Rt△OPM'中,OM'==,∵四边形OM'NH的面积为,∴OM'×d=,∴d=.‎ 考点:二次函数综合题;探究型;压轴题.‎