- 2.26 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
全等三角形问题中常见的辅助线的作法
常见辅助线的作法有以下几种:
1) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.
2) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法
适合于证明线段的和、差、倍、分等类的题目.
3) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.
4) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.
5) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
一、 倍长中线(线段)造全等
例1.已知:如图3所示,AD为 △ABC的中线,
求证:AB+AC>2AD。
分析:要证AB+AC>2AD,由图形想到: AB+BD>AD,AC+CD>AD,所以有:AB+AC+ BD+CD > AD +AD=2AD,
但它的左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去。
证明:延长AD至E,使DE=AD,连接BE,CE。
3图
例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.
因为BD=DC=AC,所以AC=1/2BC
因为E是DC中点,所以EC=1/2DC=1/2AC
∠ACE=∠BCA,所以△BCA∽△ACE
所以∠ABC=∠CAE
因为DC=AC,所以∠ADC=∠DAC
∠ADC=∠ABC+∠BAD
所以∠ABC+∠BAD=∠DAE+∠CAE
所以∠BAD=∠DAE
即AD平分∠BAE
应用:
二、截长补短
例1.已知:如图1所示, AD为△ABC的中线,且∠1=∠2,∠3=∠4。
求证:BE+CF>EF。
分析:要证BE+CF>EF ,可利用三角形三 边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠2, ∠3=∠4,可在角的两边截取相等的线段,利用全等三角形的对应边相等,把EN,FN,EF移到同个三角形中。
证明:在DN上截取DN=DB,连接NE,NF。 延长FD到G , 使DG=FD, 再连结EG,BG
1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC
证明:
取AB中点E,连接DE
∵AD=BD
∴DE⊥AB,即∠AED=90º【等腰三角形三线合一】
∵AB=2AC
∴AE=AC
又∵∠EAD=∠CAD【AD平分∠BAC】
AD=AD
∴⊿AED≌⊿ACD(SAS)
∴∠C=∠AED=90º
∴CD⊥AC
2、如图,AC∥BD,EA,EB分别平分∠CAB,∠DBA,CD过点E,求证;AB=AC+BD
在AB上取点N ,使得AN=AC
∠CAE=∠EAN ,AE为公共边,所以三角形CAE全等三角形EAN
所以∠ANE=∠ACE
又AC平行BD
所以∠ACE+∠BDE=180
而∠ANE+∠ENB=180
所以∠ENB=∠BDE
∠NBE=∠EBN
BE为公共边,所以三角形EBN全等三角形EBD
所以BD=BN
所以AB=AN+BN=AC+BD
3、如图,已知在内,,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP
证明:
做辅助线PM‖BQ,与QC相交与M。
(首先算清各角的度数)
∵∠APB=180°—∠BAP—∠ABP=180°—30°—80°=70°
且∠APM=180°—∠APB—∠MPC=180°—70°—∠QBC(同位角相等)=180°—70°—40°=70°
∴∠APB=∠APM
又∵AP是BAC的角平分线,
∴∠BAP=∠MAP
AP是公共边
∴△ABP≌△AMP(角边角)
∴AB=AM,BP=MP
在△MPC中,∠MCP=∠MPC=40°
∴MP=MC
∴AB+BP=AM+MP=AM+MC=AC
在△QBC中
∵∠QBC=QCB=40°
∴BQ=QC
∴BQ+AQ=AQ+QC=AC
∴BQ+AQ=AB+BP
赞同
4、角平分线如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,
求证:
延长BA,作DF⊥BA的延长线,作DE⊥BC
∵∠1=∠2
∴DE=DF(角分线上的点到角的两边距离相等)
∴在Rt△DFA与Rt△DEC中
{AD=DC,DF=DE}
∴Rt△DFA≌Rt△DEC(HL)
∴∠3=∠C
因为∠4+∠3=180°
∴∠4+∠C=180°
即∠A+∠C=180°♢
5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC
延长AC至E,使AE=AB,连结PE。
然后证明一下△ABP≌AEP得到PB=PE备用(角边角证很容易吧~)
△PCE中,EC>PE-PC
∵EC=AE-AC,AE=AB
∴EC=AB-AC
又PB=PE
∴PE-PC=PB-PC
∴AB-AC>PB-PC
应用:
三、平移变换
例1 AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC周长记为,△EBC周长记为.求证>.
例2 如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.
四、借助角平分线造全等
1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD
在AC上取点F,使AF=AE
∵AD是角A的平分线
∴角EAO=角FAE/
∵AO=AO
∴三角形AEO与AFO全等(两边夹角相等)
∴EO=FO ,角AOE=角AOF
∵CE是角C的平分线
∴角DCO=角FCO
∵角B=60°
∴角A+角C=180-60=120°
∴角COD=角CAO+角OCA=角A/2+角C/2=60度
∴角OCF=180-角AOF-角COD=180-60-60=60°
∴角OCF=角COD
∵OC=OC
∴三角形OCD与CFO全等 (两边夹角相等)
∴CF=CD
∴AC=AF+CF=AE+CD
即:AE+CD=AC
2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.
证明:连接BD,CD
DG⊥BC于G且平分BC
所以GD为BC垂直平分线
垂直平分线上的点到线段两端点距离相等
BD=CD
角平分线上的点到角两边距离相等
,AD平分∠BAC,DE⊥AB于E,DF⊥AC的延长线于F
所以DE=DF
在RT△BED,RT△CFD中
DE=DF
BD=CD
RT△BED≌RT△CFD(HL)
BE=CF
应用:
五、旋转
例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.
将三角形ADF绕点A顺时针旋转90度,至三角形ABG
则GE=GB+BE=DF+BE=EF
又AE=AE,AF=AG,
所以三角形AEF全等于AEG
所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF
又∠EAF+∠BAE+∠DAF=90
所以∠EAF=45度
例2 D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。
(1) 当绕点D转动时,求证DE=DF。
(2) 若AB=2,求四边形DECF的面积。
做DP⊥BC,垂足为P,做DQ⊥AC,垂足为Q
∵D为中点,且△ABC为等腰RT△ABC
∴DP=DQ=½BC=½AC
又∵∠FDQ=∠PDE(旋转)∠DQF=∠DPE=90°
∴△DQF≌△DPE
∴S△DQF=S△DPE
又∵S四边形DECF=S四边形DFCP+S△DPE
∴S四边形DECF=S四边形DFCP+S△DQF=½BC*½AC=¼AC²(AC=BC=定值)
∴四边形DECF面积不会改变
例3 如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为 ;
我简单说一下
过D点做DE⊥AB的延长线
然后证明DMN≌DME
(注意△DBE实际上是△DCN旋转后得来的)
全等三角形证明经典50题(含答案)
1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
A
D
B
C
解:延长AD到E,使AD=DE
∵D是BC中点
∴BD=DC
在△ACD和△BDE中
AD=DE
∠BDE=∠ADC
BD=DC
∴△ACD≌△BDE
∴AC=BE=2
∵在△ABE中
AB-BE<AE<AB+BE
∵AB=4
即4-2<2AD<4+2
1<AD<3
∴AD=2
2. 已知:D是AB中点,∠ACB=90°,求证:
D
A
B
C
延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
1. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
A
B
C
D
E
F
2
1
证明:连接BF和EF
∵ BC=ED,CF=DF,∠BCF=∠EDF
∴ 三角形BCF全等于三角形EDF(边角边)
∴ BF=EF,∠CBF=∠DEF
连接BE
在三角形BEF中,BF=EF
∴ ∠EBF=∠BEF。
∵ ∠ABC=∠AED。
∴ ∠ABE=∠AEB。
∴ AB=AE。
在三角形ABF和三角形AEF中
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF
∴ 三角形ABF和三角形AEF全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
2. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
B
A
C
D
F
2
1
E
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又,EF∥AB
∴,∠EFD=∠1
∠1=∠2
∴∠CGD=∠2
∴△AGC为等腰三角形,
AC=CG
又 EF=CG
∴EF=AC
1. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C
A
证明:延长AB取点E,使AE=AC,连接DE
∵AD平分∠BAC
∴∠EAD=∠CAD
∵AE=AC,AD=AD
∴△AED≌△ACD (SAS)
∴∠E=∠C
∵AC=AB+BD
∴AE=AB+BD
∵AE=AB+BE
∴BD=BE
∴∠BDE=∠E
∵∠ABC=∠E+∠BDE
∴∠ABC=2∠E
∴∠ABC=2∠C
1. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
证明:
在AE上取F,使EF=EB,连接CF
∵CE⊥AB
∴∠CEB=∠CEF=90°
∵EB=EF,CE=CE,
∴△CEB≌△CEF
∴∠B=∠CFE
∵∠B+∠D=180°,∠CFE+∠CFA=180°
∴∠D=∠CFA
∵AC平分∠BAD
∴∠DAC=∠FAC
∵AC=AC
∴△ADC≌△AFC(SAS)
∴AD=AF
∴AE=AF+FE=AD+BE
2. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
A
D
B
C
解:延长AD到E,使AD=DE
∵D是BC中点
∴BD=DC
在△ACD和△BDE中
AD=DE
∠BDE=∠ADC
BD=DC
∴△ACD≌△BDE
∴AC=BE=2
∵在△ABE中
AB-BE<AE<AB+BE
∵AB=4
即4-2<2AD<4+2
1<AD<3
∴AD=2
1. 已知:D是AB中点,∠ACB=90°,求证:
D
A
B
C
解:延长AD到E,使AD=DE
∵D是BC中点
∴BD=DC
在△ACD和△BDE中
AD=DE
∠BDE=∠ADC
BD=DC
∴△ACD≌△BDE
∴AC=BE=2
∵在△ABE中
AB-BE<AE<AB+BE
∵AB=4
即4-2<2AD<4+2
1<AD<3
∴AD=2
1. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
A
B
C
D
E
F
2
1
证明:连接BF和EF。
∵ BC=ED,CF=DF,∠BCF=∠EDF。
∴ 三角形BCF全等于三角形EDF(边角边)。
∴ BF=EF,∠CBF=∠DEF。
连接BE。
在三角形BEF中,BF=EF。
∴ ∠EBF=∠BEF。
又∵ ∠ABC=∠AED。
∴ ∠ABE=∠AEB。
∴ AB=AE。
在三角形ABF和三角形AEF中,
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。
∴ 三角形ABF和三角形AEF全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
2. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
B
A
C
D
F
2
1
E
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴
△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又EF∥AB
∴∠EFD=∠1
∠1=∠2
∴∠CGD=∠2
∴△AGC为等腰三角形,
AC=CG
又 EF=CG
∴EF=AC
1. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C
A
C
D
B
证明:延长AB取点E,使AE=AC,连接DE
∵AD平分∠BAC
∴∠EAD=∠CAD
∵AE=AC,AD=AD
∴△AED≌△ACD (SAS)
∴∠E=∠C
∵AC=AB+BD
∴AE=AB+BD
∵AE=AB+BE
∴BD=BE
∴∠BDE=∠E
∵∠ABC=∠E+∠BDE
∴∠ABC=2∠E
∴∠ABC=2∠C
2. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
在AE上取F,使EF=EB,连接CF
∵CE⊥AB
∴∠CEB=∠CEF=90°
∵EB=EF,CE=CE,
∴△CEB≌△CEF
∴∠B=∠CFE
∵∠B+∠D=180°,∠CFE+∠CFA=180°
∴∠D=∠CFA
∵AC平分∠BAD
∴∠DAC=∠FAC
又∵AC=AC
∴△ADC≌△AFC(SAS)
∴AD=AF
∴AE=AF+FE=AD+BE
12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。
在BC上截取BF=AB,连接EF
∵BE平分∠ABC
∴∠ABE=∠FBE
又∵BE=BE
∴⊿ABE≌⊿FBE(SAS)
∴∠A=∠BFE
∵AB//CD
∴∠A+∠D=180º
∵∠BFE+∠CFE=180º
∴∠D=∠CFE
又∵∠DCE=∠FCE
CE平分∠BCD
CE=CE
∴⊿DCE≌⊿FCE(AAS)
∴CD=CF
∴BC=BF+CF=AB+CD
13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
D
C
B
A
F
E
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,
∵∠EAB=∠BDE,
∴∠AED=∠ABD,
∴四边形ABDE是平行四边形。
∴得:AE=BD,
∵AF=CD,EF=BC,
∴三角形AEF全等于三角形DBC,
∴∠F=∠C。
14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C
A
B
C
D
证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。则:
△AED是等腰三角形。
∴AE=DE
而AB=CD
∴BE=CE (等量加等量,或等量减等量)
∴△BEC是等腰三角形
∴∠B=∠C.
14. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PBDE。当∠AEB越小,则DE越小。
证明:
过D作AE平行线与AC交于F,连接FB
由已知条件知AFDE为平行四边形,ABEC为矩形 ,且△DFB为等腰三角形。
RT△BAE中,∠AEB为锐角,即∠AEB<90°
∵DF//AE ∴∠FDB=∠AEB<90°
△DFB中 ∠DFB=∠DBF=(180°-∠FDB)/2>45°
RT△AFB中,∠FBA=90°-∠DBF <45°
∠AFB=90°-∠FBA>45°
∴AB>AF
∵AB=CE AF=DE
∴CE>DE
49、 (10分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.
A
B
E
C
D
∵AB=DC,AC=DB,BC=BC
∴△ABC≌△DCB,
∴∠ABC=∠DCB
又∵BE=CE,AB=DC
∴△ABE≌△DCE
∴AE=DE
50.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.
A
B
C
D
E
F
图9
作CG⊥AB,交AD于H,
则∠ACH=45º,∠BCH=45º
∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE
又∵AC=CB, ∠ACH=∠B=45º
∴△ACH≌△CBE, ∴CH=BE
又∵∠DCH=∠B=45º, CD=DB
∴△CFD≌△BED
∴∠ADC=∠BDE
51.已知:AB=10,AC=2,D是BC中点,AD是整数,求AD
A
D
B
C
证明: 延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD
即BE=AC=2
在三角形ABE中,AB-BEPB-PC。
法二:
延长至,使,连接
在与中
(SAS)
在中,
。
思考:当已知或求证中涉及线段的和或差时,一般采用“截长补短”法。具体作法是:在较长的线段上截取一条线段等于一条较短线段,再设法证明较长线段的剩余线段等于另外的较短线段,称为“截长”;或者将一条较短线段延长,使其等于另外的较短线段,然后证明这两条线段之和等于较长线段,称为“补短”。
小结:本题组总结了本章中常用辅助线的作法,以后随着学习的深入还要继续总结。我们不光要总结辅助线的作法,还要知道辅助线为什么要这样作,这样作有什么用处。
同步练习
一、选择题:
1. 能使两个直角三角形全等的条件是( )
A. 两直角边对应相等 B. 一锐角对应相等
C. 两锐角对应相等 D. 斜边相等
2. 根据下列条件,能画出唯一的是( )
A. ,, B. ,,
C. ,, D. ,
3. 如图,已知,,增加下列条件:①;②;③;④。其中能使的条件有( )
A. 4个 B. 3个 C. 2个 D. 1个
4. 如图,,,交于点,下列不正确的是( )
A. B.
C. 不全等于 D. 是等腰三角形
5. 如图,已知,,,则等于( )
A. B. C. D. 无法确定
二、填空题:
6. 如图,在中,,的平分线交于点,且,,则点到的距离等于__________;
7. 如图,已知,,是上的两点,且,若,,则____________;
8. 将一张正方形纸片按如图的方式折叠,为折痕,则的大小为_________;
9. 如图,在等腰中,,,平分交于,于,若,则的周长等于____________;
10. 如图,点在同一条直线上,//,//,且,若,,则___________;
三、解答题:
11. 如图,为等边三角形,点分别在上,且,与交于点。求的度数。
12. 如图,,,为上一点,,,交延长线于点。求证:。
同步练习的答案
一、选择题:
1. A 2. C 3. B 4. C 5. C
二、填空题:
6. 4 7. 8. 9. 10 10. 6
三、解答题:
11. 解:为等边三角形
,
在与中
(SAS)
。
12. 证明:,
在与中
(AAS)
。