- 462.22 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考模拟试卷
一.选择题(共10小题)
1.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
2.已知点A(a,1)与点B(﹣4,b)关于原点对称,则a+b的值为( )
A.5 B.﹣5 C.3 D.﹣3
3.下列运算正确的是( )
A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2•4x2=﹣12x4
C.3x+2x2=5x3 D.x6÷x2=x3
4.下列命题是真命题的是( )
A.四边都相等的四边形是矩形
B.菱形的对角线相等
C.对角线互相垂直的平行四边形是正方形
D.对角线相等的平行四边形是矩形
5.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )
A. B. C. D.
6.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则( )
A.m=24(1﹣a%﹣b%) B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)
7.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是( )
第23页(共23页)
A. B. C. D.
8.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
9.已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是( )
A.3 B.4 C.5 D.6
10.下列二次根式中,最简二次根式是( )
A. B. C. D.
二.填空题(共6小题)
11.计算(﹣)﹣1= .
12.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为 .
第23页(共23页)
13.对于函数y=,当函数值y<﹣1时,自变量x的取值范围是 .
14.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是 .
15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为 .
16.如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=,则AD= .
三.解答题(共9小题)
17.计算:4sin45°+|﹣2|﹣+()0.
18.先化简,再求值:(a+)÷,其中a=2.
19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;
(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.
第23页(共23页)
20.随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.
(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;
(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
21.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.
求证:∠ABF=∠CBE.
22.如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.
(1)求反比例函数的表达式和点B的坐标;
第23页(共23页)
(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.
23.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站
A
B
C
D
E
x(千米)
8
9
10
11.5
13
y1(分钟)
18
20
22
25
28
(1)求y1关于x的函数表达式;
(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG=,AH=3,求EM的值.
第23页(共23页)
25.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
第23页(共23页)
参考答案与试题解析
一.选择题(共10小题)
1.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
【解答】解:567000=5.67×105,
故选:C.
2.已知点A(a,1)与点B(﹣4,b)关于原点对称,则a+b的值为( )
A.5 B.﹣5 C.3 D.﹣3
【【解答】解:由A(a,1)关于原点的对称点为B(﹣4,b),得
a=4,b=﹣1,
a+b=3,
故选:C.
3.下列运算正确的是( )
A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2•4x2=﹣12x4
C.3x+2x2=5x3 D.x6÷x2=x3
【解答】解:∵﹣3(x﹣4)=﹣3x+12,故选项A正确,
∵(﹣3x)2•4x2=9x2•4x2=36x4,故选项B错误,
∵3x+2x2不能合并,故选项C错误,
∵x6÷x2=x4,故选项D错误,
故选A.
4.下列命题是真命题的是( )
A.四边都相等的四边形是矩形
B.菱形的对角线相等
第23页(共23页)
C.对角线互相垂直的平行四边形是正方形
D.对角线相等的平行四边形是矩形
【解答】解:A、四边都相等的四边形是菱形,故错误;
B、矩形的对角线相等,故错误;
C、对角线互相垂直的平行四边形是菱形,故错误;
D、对角线相等的平行四边形是矩形,正确,
故选D.
5.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )
A. B. C. D.
【解答】解:画树状图得:
∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,
∴两次摸出的小球标号之和等于5的概率是:=.
故选:C.
6.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则( )
A.m=24(1﹣a%﹣b%) B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)
【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,
∴2月份鸡的价格为24(1﹣a%),
∵3月份比2月份下降b%,
第23页(共23页)
∴三月份鸡的价格为24(1﹣a%)(1﹣b%),
故选D.
7.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是( )
A. B. C. D.
【解答】解:∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∵点E是边BC的中点,
∴BE=BC=AD,
∴△BEF∽△DAF,
∴=,
∴EF=AF,
∴EF=AE,
∵点E是边BC的中点,
∴由矩形的对称性得:AE=DE,
∴EF=DE,设EF=x,则DE=3x,
∴DF==2x,
∴tan∠BDE===;
故选:A.
8.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
第23页(共23页)
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
【解答】解:如图作PE⊥AB于E.
在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
∴PE=AE=×60=30n mile,
在Rt△PBE中,∵∠B=30°,
∴PB=2PE=60n mile,
故选B
9.已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是( )
A.3 B.4 C.5 D.6
【解答】解:过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,此时△PMF周长最小值,
∵F(0,2)、M(,3),
∴ME=3,FM==2,
∴△PMF周长的最小值=ME+FM=3+2=5.
第23页(共23页)
故选C.
10.下列二次根式中,最简二次根式是( )
A. B. C. D.
【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;
B、被开方数含能开得尽方的因数或因式,故B不符合题意;
C、被开方数含分母,故C不符合题意;
D、被开方数含能开得尽方的因数或因式,故D不符合题意;
故选:A.
二.填空题(共6小题)
11.计算(﹣)﹣1= ﹣2 .
【解答】解:原式==﹣2,
故答案为﹣2.
12.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为 1 .
【解答】解:∵MN∥BC,
∴△AMN∽△ABC,
∴,即,
∴MN=1,
第23页(共23页)
故答案为:1.
13.对于函数y=,当函数值y<﹣1时,自变量x的取值范围是 ﹣2<x<0 .
【解答】解:∵当y=﹣1时,x=﹣2,
∴当函数值y<﹣1时,﹣2<x<0.
故答案为:﹣2<x<0.
14.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是 .
【解答】解:画树状图为:
共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,
所以则两辆汽车都直行的概率为,
故答案为:.
15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为 60° .
【解答】解:∵AB∥CD,∠ABF=40°,
∴∠CFB=180°﹣∠B=140°,
又∵∠CFE:∠EFB=3:4,
∴∠CFE=∠CFB=60°,
∵AB∥CD,
∴∠BEF=∠CFE=60°,
故答案为:60°.
第23页(共23页)
16.如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=,则AD= 4 .
【解答】解:∵AB=AC,
∴∠ABC=∠ACB=∠ADB=30°,
∵BD是直径,
∴∠BAD=90°,∠ABD=60°,
∴∠CBD=∠ABD﹣∠ABC=30°,
∴∠ABC=∠CBD,
∴==,
∴=,
∴AD=CB,
∵∠BCD=90°,
∴BC=CD•tan60°=•=4,
∴AD=BC=4.
故答案为4.
三.解答题(共9小题)
17.计算:4sin45°+|﹣2|﹣+()0.
【解答】解:4sin45°+|﹣2|﹣+()0
=4×+2﹣2+1
=2﹣2+3
第23页(共23页)
=3.
18.先化简,再求值:(a+)÷,其中a=2.
【解答】解:(a+)÷,
=[+]
=
=
当a=2时,原式==3.
19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;
(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.
【解答】解:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);
(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.
第23页(共23页)
20.随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.
(1)本次调查的学生共有 50 人,估计该校1200名学生中“不了解”的人数是 360 人;
(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
【解答】解:(1)4÷8%=50(人),
1200×(1﹣40%﹣22%﹣8%)=360(人);
故答案为:50,360;
(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,
∴P(恰好抽到一男一女的)==.
21.如图,点E,F分别在菱形ABCD的边DC,DA上,且CE=AF.
第23页(共23页)
求证:∠ABF=∠CBE.
【解答】证明:∵四边形ABCD是菱形,
∴AB=BC,∠A=∠C,
∵在△ABF和△CBE中,,
∴△ABF≌△CBE(SAS),
∴∠ABF=∠CBE.
22.如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.
(1)求反比例函数的表达式和点B的坐标;
(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.
【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,
∴A(﹣4,﹣2),
把A(﹣4,﹣2)代入y=,可得k=8,
∴反比例函数的表达式为y=,
∵点B与点A关于原点对称,
第23页(共23页)
∴B(4,2);
(2)如图所示,过P作PE⊥x轴于E,交AB于C,
设P(m,),则C(m,m),
∵△POC的面积为3,
∴m×|m﹣|=3,
解得m=2或2,
∴P(2,)或(2,4).
23.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站
A
B
C
D
E
x(千米)
8
9
10
11.5
13
y1(分钟)
18
20
22
25
28
(1)求y1关于x的函数表达式;
(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:
,
第23页(共23页)
解得:,
故y1关于x的函数表达式为:y1=2x+2;
(2)设李华从文化宫回到家所需的时间为y,则
y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,
∴当x=9时,y有最小值,ymin==39.5,
答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
24.(2017•南宁)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG=,AH=3,求EM的值.
【解答】(1)证明:如图1中,
∵AC∥EG,
第23页(共23页)
∴∠G=∠ACG,
∵AB⊥CD,
∴=,
∴∠CEF=∠ACD,
∴∠G=∠CEF,∵∠ECF=∠ECG,
∴△ECF∽△GCE.
(2)证明:如图2中,连接OE,
∵GF=GE,
∴∠GFE=∠GEF=∠AFH,
∵OA=OE,
∴∠OAE=∠OEA,
∵∠AFH+∠FAH=90°,
∴∠GEF+∠AEO=90°,
∴∠GEO=90°,
∴GE⊥OE,
∴EG是⊙O的切线.
(3)解:如图3中,连接OC.设⊙O的半径为r.
第23页(共23页)
在Rt△AHC中,tan∠ACH=tan∠G==,
∵AH=3,
∴HC=4,
在Rt△HOC中,∵OC=r,OH=r﹣3,HC=4,
∴(r﹣3)2+(4)2=r2,
∴r=,
∵GM∥AC,
∴∠CAH=∠M,∵∠OEM=∠AHC,
∴△AHC∽△MEO,
∴=,
∴=,
∴EM=.
25.(2017•成都)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
第23页(共23页)
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
【解答】解:(1)由题意抛物线的顶点C(0,4),A(2,0),设抛物线的解析式为y=ax2+4,
把A(2,0)代入可得a=﹣,
∴抛物线C的函数表达式为y=﹣x2+4.
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,
由,消去y得到x2﹣2mx+2m2﹣8=0,
由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,
则有,解得2<m<2,
∴满足条件的m的取值范围为2<m<2.
(3)结论:四边形PMP′N能成为正方形.
理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.
第23页(共23页)
由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,
∴PF=FM,∠PFM=90°,
易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,
∴M(m+2,m﹣2),
∵点M在y=﹣x2+4上,
∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),
∴m=﹣3时,四边形PMP′N是正方形.
情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),
把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),
∴m=6时,四边形PMP′N是正方形.
第23页(共23页)
第23页(共23页)