- 3.09 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017 挑战压轴题 中考数学
精讲解读篇
因动点产生的相似三角形问题
1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.
(1)求直线AB的函数表达式;
(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;
(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.
2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.
(1)求证:AH=BD;
(2)设BD=x,BE•BF=y,求y关于x的函数关系式;
(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.
3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.
(1)求直线AB的表达式;
(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;
(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.
4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.
(1)当点E是BD的中点时,求tan∠AFB的值;
(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;
(3)当△BGE和△BAF相似时,求线段AF的长.
5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.
(1)求这个二次函数的解析式;
(2)点P是该二次函数图象的顶点,求△APC的面积;
(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.
6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)
(1)求BC的长;
(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;
(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.
7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;
(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).
因动点产生的等腰三角形问题
8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.
(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;
(2)如图1,求证:HF=EF;
(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.
9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.
(1)求这条抛物线的解析式;
(2)求证:GH=HK;
(3)当△CGH是等腰三角形时,求m的值.
10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.
(1)求AD的长;
(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;
(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.
11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当△BDP为等腰直角三角形时,求线段PD的长;
(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.
12.综合与探究
如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).
(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;
(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;
(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.
因动点产生的直角三角形问题
13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.
(1)求线段CF的长;
(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;
(3)如果△AMN为等腰直角三角形,求线段FM的长.
14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.
(1)分别求直线l1与x轴,直线l2与AB的交点坐标;
(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;
(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).
因动点产生的平行四边形问题
15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);
(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;
(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△
BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求点E坐标及经过O,D,C三点的抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.
17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.
(1)求直线AD的解析式;
(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;
(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.
18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.
(1)用关于x的代数式表示BQ,DF.
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.
(3)在点P的整个运动过程中,
①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).
19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.
(1)求b的值以及直线AD与x轴正方向的夹角;
(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;
(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.
20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.
(1)求反比例函数解析式;
(2)联结BO,求∠DBO的正切值;
(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N为顶点的四边形是平行四边形,求点N的坐标.
21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
因动点产生的梯形问题
22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.
(1)求二次函数的解析式;
(2)求直线AC的表达式;
(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.
23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.
(1)求证:AB∥CD;
(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.
因动点产生的面积问题
24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.
(1)请直接写出抛物线的解析式;
(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;
(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.
25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥
CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.
(1)求点M的坐标(用含t的代数式表示).
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.
(3)当t为何值时,四边形BNDM的面积最小.
26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.
27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.
(1)求过A,B,C三点的抛物线的解析式;
(2)P为抛物线上一点,它关于原点的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②若点P的横坐标为t(﹣1<t<
1),当t为何值时,四边形PBQC面积最大?并说明理由.
28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.
(1)∠OBA= °.
(2)求抛物线的函数表达式.
(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?
29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.
30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B
(1)求m的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;
(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.
31.问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.
(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.
①点B的坐标为( 、 ),BK的长是 ,CK的长是 ;
②求点F的坐标;
③请直接写出抛物线的函数表达式;
(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D
(1)若m=3,试求四边形CC1B1B面积S的最大值;
(2)若点B1恰好落在y轴上,试求的值.
因动点产生的相切问题
34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.
(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;
(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;
(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.
35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.
(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);
(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;
(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.
36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.
点C是弧AB上的点,联结PC、DC.
(1)联结BD交弧AB于E,当a=2时,求BE的长;
(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;
(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.
37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).
(1)如图1,连接DQ平分∠BDC时,t的值为 ;
(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;
(3)请你继续进行探究,并解答下列问题:
①证明:在运动过程中,点O始终在QM所在直线的左侧;
②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.
38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.
(1)求抛物线的解析式;
(2)若PA:PB=3:1,求一次函数的解析式;
(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.
因动点产生的线段和差问题
39.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.
(1)这条抛物线的对称轴是 ,直线PQ与x轴所夹锐角的度数是 ;
(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;
(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.
40.抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.
(1)求抛物线的函数表达式;
(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;
(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.
41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为 ;
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△
BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.
(1)求∠EPF的大小;
(2)若AP=6,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.
43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.
(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );
(2)点P是线段BC上的动点(点P不与点B、C重合)
①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;
②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;
③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.
44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.
(1)当AN平分∠MAB时,求DM的长;
(2)连接BN,当DM=1时,求△ABN的面积;
(3)当射线BN交线段CD于点F时,求DF的最大值.
45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.
发现:的长与的长之和为定值l,求l:
思考:点M与AB的最大距离为 ,此时点P,A间的距离为 ;
点M与AB的最小距离为 ,此时半圆M的弧与AB所围成的封闭图形面积为 ;
探究:当半圆M与AB相切时,求的长.
(注:结果保留π,cos35°=,cos55°=)
46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.
填空:当点A位于 时,线段AC的长取得最大值,且最大值为
(用含a,b的式子表示)
(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.
47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).
48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.
(1)求N的函数表达式;
(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;
(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.
49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.
(1)求抛物线对应的二次函数的表达式;
(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;
(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.
2017 挑战压轴题 中考数学
精讲解读篇
参考答案与试题解析
一.解答题(共36小题)
1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.
(1)求直线AB的函数表达式;
(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;
(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.
【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;
(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;
(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.
【解答】解:(1)如图①,设直线AB与x轴的交点为M.
∵∠OPA=45°,
∴OM=OP=2,即M(﹣2,0).
设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得
,
解得.
故直线AB的解析式为y=x+2;
(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.
设Q(m,m2),则C(m,m+2).
∴QC=m+2﹣m2=﹣(m﹣)2+,
QD=QC=[﹣(m﹣)2+].
故当m=时,点Q到直线AB的距离最大,最大值为;
(3)∵∠APT=45°,
∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.
①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.
∵Q′(﹣2,4),F(0,4),
∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.
(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;
(ii)当∠PAT=90°时,得到:PT=2,此时t=0.
②如图③,若∠PQB=45°,①中是情况之一,答案同上;
先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.
则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.
设Q″(n,n2)(﹣2<n<0),由FQ″=2,得
n2+(4﹣n2)2=22,即n4﹣7n2+12=0.
解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).
可证△PFQ″为等边三角形,
所以∠PFQ″=60°,又PQ″=PQ″,
所以∠PBQ″=∠PFQ″=30°.
则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.
(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.
则ET=AE=,OE=1,
所以OT=﹣1,
解得t=1﹣;
(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.
设TG=a,则PG=TG=a,AG=TG=a,AP=,
∴a+a=,
解得PT=a=﹣1,
∴OT=OP﹣PT=3﹣,
∴t=3﹣.
综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.
2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.
(1)求证:AH=BD;
(2)设BD=x,BE•BF=y,求y关于x的函数关系式;
(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.
【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;
(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;
(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.
【解答】(1)证明:∵AD⊥BC,BH⊥AO,
∴∠ADO=∠BHO=90°,
在△ADO与△BHO中,
,
∴△ADO≌△BHO(AAS),
∴OH=OD,
又∵OA=OB,
∴AH=BD;
(2)解:连接AB、AF,如图1所示,
∵AO是半径,AO⊥弦BF,
∴∴AB=AF,
∴∠ABF=∠AFB,
在Rt△ADB与Rt△BHA中,
,
∴Rt△ADB≌Rt△BHA(HL),
∴∠ABF=∠BAD,
∴∠BAD=∠AFB,
又∵∠ABF=∠EBA,
∴△BEA∽△BAF,
∴=,
∴BA2=BE•BF,
∵BE•BF=y,
∴y=BA2,
∵∠ADO=∠ADB=90°,
∴AD2=AO2﹣DO2,AD2=AB2﹣BD2,
∴AO2﹣DO2=AB2﹣BD2,
∵直径BC=8,BD=x,
∴AB2=8x,
则y=8x(0<x<4);
方法二:∵BE•BF=y,BF=2BH,
∴BE•BH=y,
∵△BED∽△BOH,
∴=,
∴OB•BD=BE•BH,
∴4x=y,
∴y=8x(0<x<4);
(3)解:连接OF,如图2所示,
∵∠GFB是公共角,∠FAE>∠G,
∴当△FAE∽△FBG时,∠AEF=∠G,
∵∠BHA=∠ADO=90°,
∴∠AEF+∠DAO=90°,∠AOD+∠DAO=90°,
∴∠AEF=∠AOD,
∴∠G=∠AOD,
∴AG=AO=4,
∵∴∠AOD=∠AOF,
∴∠G=∠AOF,
又∵∠GFO是公共角,
∴△FAO∽△FOG,
∴=,
∵AB2=8x,AB=AF,
∴AF=2x,
∴=,
解得:x=3±,
∵3+>4,舍去,
∴BD=3﹣.
3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.
(1)求直线AB的表达式;
(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;
(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.
【分析】(1)先通过解直角三角形求得A的坐标,然后根据待定系数法即可求得直线AB的解析式;
(2)作DE∥OA,根据题意得出==
,求得DE,即D的横坐标,代入AB的解析式求得纵坐标,然后根据反比例函数图象上点的坐标特征即可求得k1;
(3)根据勾股定理求得AB、OE,进一步求得BE,然后根据相似三角形的性质求得EF的长,从而求得FM的长,得出F的坐标,然后根据反比例函数图象上点的坐标特征即可求得k2.
【解答】解:(1)∵A(3,0)、B(0,m)(m>0),
∴OA=3,OB=m,
∵tan∠BAO==2,
∴m=6,
设直线AB的解析式为y=kx+b,
代入A(3,0)、B(0,6)得:
解得:b=6,k=﹣2
∴直线AB的解析式为y=﹣2x+6;
(2)如图1,∵AD=2DB,
∴=,
作DE∥OA,
∴==,
∴DE=OA=1,
∴D的横坐标为1,
代入y=﹣2x+6得,y=4,
∴D(1,4),
∴k1=1×4=4;
(3)如图2,∵A(3,0),B(0,6),
∴E(,3),AB==3,
∵OE是Rt△OAB斜边上的中线,
∴OE=AB=,BE=,
∵EM⊥x轴,
∴F的横坐标为,
∵△OEF∽△OBE,
∴=,
∴,
∴EF=,
∴FM=3﹣=.
∴F(,),
∴k2=×=.
4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.
(1)当点E是BD的中点时,求tan∠AFB的值;
(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;
(3)当△BGE和△BAF相似时,求线段AF的长.
【分析】(1)过点E作EH⊥CD于H,如图1,易证EH是△DBC的中位线及△AHE∽△EHD,设AH=x,运用相似三角形的性质可求出x,就可求出tan∠AFB的值;
(2)取AB的中点O,连接OC、OE,如图2,易证四点A、C、B、E共圆,根据圆周角定理可得∠BCE=∠BAF,根据圆内接四边形内角互补可得∠CBE+∠CAE=180°,由此可推出∠CBE=∠BFA,从而可得△BCE∽△FAB,即可得到CE•FA=BC•AB,只需求出AB就可解决问题;
(3)过点E作EH⊥CD于H,作EM⊥BC于M,如图3,易证四边形EMCH是矩形,由△BCE∽△FAB,△BGE与△FAB相似可得△BGE与△BCE相似,即可得到∠EBG=∠ECB.由点A、C、B、E共圆可得∠ECA=∠EBG,即可得到∠ECB=∠ECA,根据角平分线的性质可得EM=EH,即可得到矩形EMCH是正方形,则有CM=CH,易证EB=EA,根据HL可得Rt△BME∽Rt△AHE,则有BM=AH.设AH=x,根据CM=CH可求出x,由此可求出CE的长,再利用(2)中的结果就可求出AF的值.
【解答】解:(1)过点E作EH⊥CD于H,如图1,
则有∠EHA=∠EHD=90°.
∵∠BCD=90°,BE=DE,
∴CE=DE.
∴CH=DH,
∴EH=BC=.
设AH=x,则DH=CH=x+1.
∵AE⊥BD,
∴∠AEH+∠DEH=∠AED=90°.
∵∠AEH+∠EAH=90°,
∴∠EAH=∠DEH,
∴△AHE∽△EHD,
∴=,
∴EH2=AH•DH,
∴()2=x(x+1),
解得x=(舍负),
∴tan∠EAH===.
∵BF∥CD,
∴∠AFB=∠EAH,
∴tan∠AFB=;
(2)CE•AF的值不变.
取AB的中点O,连接OC、OE,如图2,
∵∠BCA=∠BEA=90°,
∴OC=OA=OB=OE,
∴点A、C、B、E共圆,
∴∠BCE=∠BAF,∠CBE+∠CAE=180°.
∵BF∥CD,
∴∠BFA+∠CAE=180°,
∴∠CBE=∠BFA,
∴△BCE∽△FAB,
∴=,
∴CE•FA=BC•AB.
∵∠BCA=90°,BC=7,AC=1,
∴AB=5,
∴CE•FA=7×5=35;
(3)过点E作EH⊥CD于H,作EM⊥BC于M,如图3,
∴∠EMC=∠MCH=∠CHE=90°,
∴四边形EMCH是矩形.
∵△BCE∽△FAB,△BGE与△FAB相似,
∴△BGE与△BCE相似,
∴∠EBG=∠ECB.
∵点A、C、B、E共圆,
∴∠ECA=∠EBG,
∴∠ECB=∠ECA,
∴EM=EH,
∴矩形EMCH是正方形,
∴CM=CH.
∵∠ECB=∠ECA=∠BCA=45°,
∴∠EBA=∠EAB=45°,
∴EB=EA,
∴Rt△BME≌Rt△AHE(HL),
∴BM=AH.
设AH=x,则BM=x,CM=7﹣x,CH=1+x,
∴7﹣x=1+x,
∴x=3,
∴CH=4.
在Rt△CHE中,
cos∠ECH===,
∴CE=4.
由(2)可得CE•FA=35,
∴AF==.
5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.
(1)求这个二次函数的解析式;
(2)点P是该二次函数图象的顶点,求△APC的面积;
(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.
【分析】
(1)由一次函数的解析式求出A、C两点坐标,再根据A、B两点坐标求出b、c即可确定二次函数解析式;
(2)根据二次函数的解析式求出P点坐标,然后计算三角形APC的面积;
(3)分两种情况讨论:①△ABC∽△AOQ,②△ABC∽△AQO.
【解答】解:(1)∵一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,
∴A(5,0),C(0,5),
∵二次函数y=﹣x2+bx+c的图象经过点A、点B,
∴b=4,c=5,
∴二次函数的解析式为:y=﹣x2+4x+5.
(2)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,
∴P(2,9),
过点P作PD∥y轴交AC于点D,如图,
则D(2,3),
∴=15;
(3)①若△ABC∽△AOQ,如图,
此时,OQ∥BC,
由B、C两点坐标可求得BC的解析式为:y=5x+5,
∴OQ的解析式为:y=5x,
由解得:,
∴Q(,);
②若△ABC∽△AQO,如图,
此时,,
∵AB=6,AO=5,AC=,
∴AQ=3,
∴Q(2,3).
综上所述,满足要求的Q点坐标为:Q(,)或Q(2,3).
6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)
(1)求BC的长;
(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;
(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.
【分析】(1)如图1中,根据AB是直径,得△ABC是直角三角形,利用勾股定理即可解决问题.
(2)如图2中,只要证明△OBC≌△OCD得BC=CD,即可解决问题.
(3)如图3中,延长ON交BC的延长线于G,作GH⊥OB于H,先求出BG,根据tan∠HBG=2,利用勾股定理求出线段HB、HG,再利用CG∥DO得,由此即可解决.
【解答】解;(1)如图1中,连接AC,
∵AB是直径,
∴∠ACB=90°,
∵tan∠ABC=2,
∴可以假设AC=2k,BC=k,
∵AB=6,AB2=AC2+BC2,
∴36=8k2+k2,
∴k2=4,
∵k>0,
∴k=2,BC=2.
(2)如图2中,
∵△MBC与△MOC相似,
∴∠MBC=∠MCO,
∵∠MBC+∠OBC=180°,∠MCO+∠OCD=180°,
∴∠OBC=∠OCD,
∵OB=OC=OD,
∴∠OBC=∠OCB=∠OCD=∠ODC,
在△OBC和△OCD中,
,
∴△OBC≌△OCD,
∴BC=CD=2.
(3)如图3中,延长ON交BC的延长线于G,作GH⊥OB于H.
∵BC∥OD,
∴∠DOG=∠OGB=∠GOB,
∴BO=BG=3,
∵tan∠HBG=,设GH=2a,HB=a,
∵BG2=GH2+HB2,
∴8a2+a2=9,
∴a2=1,
∵a>0,
∴a=1,HB=1,GH=2,OH=2,OG==2,
∵GC∥DO,
∴=,
∴ON=×=.
7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;
(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).
【分析】(1)把A、C两点的坐标代入抛物线的解析式可求b、c的值,然后利用配方法可求得点M的坐标;
(2)先求得直线AC的解析式,然后再求得抛物线的对称轴,设直线x=1与△ABC的两边分别交于点E与点F,然后求得点E和点F的坐标,然后依据平移后抛物线的顶点在△BAC的内部列不等式组求解即可;
(3)先证明∠PCM为直角,然后分为△MPC∽△CBD、BDC∽△MCP,两种情况求得PC的长,然后再求得点P的坐标即可.
【解答】解:(1)把A、C两点的坐标代入得:,
解得:.
∴二次函数的解析式为y=x2﹣2x﹣4.
配方得:y=(x﹣1)2﹣5.
∴点M的坐标为(1,﹣5).
(2)设直线AC的解析式为y=kx+b,把点A、C的坐标代入得:,解得:,
∴直线AC的解析式为y=x﹣4.
抛物线的对称轴方程为x=﹣=1.
如图1所示,直线x=1与△ABC的两边分别交于点E与点F,则点F的坐标为(1,﹣1).
将x=1代入直线y=x﹣4得:y=﹣3.
∴E(1,﹣3).
∵抛物线向上平移m个单位长度时,抛物线的顶点在△BAC的内部,
∴﹣3<﹣5+m<﹣1.
∴2<m<4.
(3)如图2所示:
把y=﹣1代入抛物线的解析式得:x2﹣2x﹣4=﹣1,解得x=﹣1或x=3,
∴B(﹣1,﹣1).
∴BD=1.
∵AB∥x轴,A(4,﹣1),
∴D(0,﹣1)
∴AD=DC=3.
∴∠DCA=45°.
过点M作ME⊥y轴,垂足为E.
∵C(0,﹣4),M(1,﹣5).
∴CE=ME=1.
∴∠ECM=45°,MC=.
∴∠ACM=90°.
∴∠PCM=∠CDB=90°.
①当△MPC∽△CBD时,,即=,解得PC=.
∴CF=PF=sin45°•PC=×=.
∴P(﹣,﹣).
如图3所示:点P在点C的右侧时,过点P作PF⊥y轴,垂足为F.
∵CP=,∠FCP=45°,∠CFP=90°,
∴CF=FP=×=.
∴P(﹣,﹣).
②当BDC∽△MCP时,=,即=,解得PC=3.
如图4所示:当点P在AC的延长线上时,过点作PE⊥y轴,垂足为E.
∵PC=3,∠PCE=45°,∠PEC=90°,
∴CE=PE=3×=3.
∴P(﹣3,﹣7).
如图5所示:当点P在AC上时,过点P作PE⊥y轴,垂足为E.
∵PC=3,∠PCE=45°,∠PEC=90°,
∴CE=PE=3×=3.
∴P(3,﹣1).
综上所述,点P的坐标为(﹣3,﹣7)或(3,﹣1)或(﹣,﹣)或(﹣,﹣).
8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.
(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;
(2)如图1,求证:HF=EF;
(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.
【分析】(1)根据直角三角形的性质和三角函数即可得到结果;
(2)如图1,连接AF,证出△DAE≌△ADH,△DHF≌△AEF,即可得到结果;
(3)如图2,取AB的中点M,连接CM,FM,在Rt△ADE中,AD=2AE,根据三角形的中位线的性质得到AD=2FM,于是得到FM=AE,由∠CAE=∠CAB=30°∠
CMF=∠AMF﹣AMC=30°,证得△ACE≌△MCF,问题即可得证.
【解答】解:(1)∵∠ACB=90°,∠BAC=60°,
∴∠ABC=30°,
∴AB=2AC=2×2=4,
∵AD⊥AB,∠CAB=60°,
∴∠DAC=30°,
∵AH=AC=,
∴AD==2,
∴BD==2;
(2)如图1,连接AF,
∵AE是∠BAC角平分线,
∴∠HAE=30°,
∴∠ADE=∠DAH=30°,
在△DAE与△ADH中,
,
∴△DAE≌△ADH,
∴DH=AE,
∵点F是BD的中点,
∴DF=AF,
∵∠EAF=∠EAB﹣∠FAB=30°﹣∠FAB
∠FDH=∠FDA﹣∠HDA=∠FDA﹣60°=(90°﹣∠FBA)﹣60°=30°﹣∠FBA,
∴∠EAF=∠FDH,
在△DHF与△AEF中,
,
∴△DHF≌△AEF,
∴HF=EF;
(3)如图2,取AB的中点M,连接CM,FM,
∵F、M分别是BD、AB的中点,
∴FM∥AD,即FM⊥AB.
在Rt△ADE中,AD=2AE,
∵DF=BF,AM=BM,
∴AD=2FM,
∴FM=AE,
∵∠ABC=30°,
∴AC=CM=AB=AM,
∵∠CAE=∠CAB=30°∠CMF=∠AMF﹣∠AMC=30°,
在△ACE与△MCF中,
,
∴△ACE≌△MCF,
∴CE=CF,∠ACE=∠MCF,
∵∠ACM=60°,
∴∠ECF=60°,
∴△CEF是等边三角形.
9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.
(1)求这条抛物线的解析式;
(2)求证:GH=HK;
(3)当△CGH是等腰三角形时,求m的值.
【分析】(1)设抛物线的解析式为y=a(x+1)2+4 (a≠0),将点A的坐标代入求得a的值即可求得抛物线的解析式;
(2)先求得直线AE、AC的解析式,由点D的横坐标为m,可求得KG、KH的长(用含m的式子),从而可证明GH=HK;
(3)可分为CG=CH,GH=GC,HG=HC三种情况,接下来依据两点间的距离公式列方程求解即可.
【解答】(1)解:∵抛物线的顶点为E(﹣1,4),
∴设抛物线的解析式为y=a(x+1)2+4 (a≠0).
又∵抛物线过点A(﹣3,0),
∴4a+4=0,解得:a=﹣1.
∴这条抛物线的解析式为y=﹣(x+1)2+4.
(2)设直线AE的解析式为y=kx+b.
∵将A(﹣3,0),E(﹣1,4),代入得:,解得:k=2,b=6,
∴直线AE的解析式为y=2x+6.
设直线AC的解析式为y=k1x+b1.
∵将A(﹣3,0),C(0,3)代入得:,解得:k=1,b=3,
∴直线AC的解析式为y=x+3.
∵D的横坐标为m,DK⊥x轴
∴G(m,2m+6),H(m,m+3).
∵K(m,0)
∴GH=m+3,HK=m+3.
∴GH=HK.
(3)由(2)可知:C(0,3),G(m,2m+6),H(m,m+3)
①若CG=CH,则=,整理得:(2m+3)2=m2,解得开平方得:2m+3=±m解得m1=﹣1,m2=﹣3,
∵﹣3<m<﹣1,
∴m≠﹣1且m≠﹣3.
∴这种情况不存在.
②若GC=GH,则=m+3,整理得:2m2+3m=0 解得m1=0(舍去),.
③若HC=HG,则=m+3,整理得:m2﹣6m﹣9=0,解得;m1=3﹣3,m2=3+3(舍去).
综上所述:当△CGH是等腰三角形时,m的值为或.
10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.
(1)求AD的长;
(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;
(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.
【分析】(1)易证AD=AC,只需运用三角函数和勾股定理求出AC即可;
(2)过点Q作QH⊥BC于H,如图1,只需用x的代数式表示QH就可解决问题;
(3)由于△PQF是以PF为腰的等腰三角形,故需分PF=PQ和PF=FQ两种情况讨论,只需将等腰三角形的性质和三角函数相结合,就可解决问题.
【解答】解:(1)在Rt△ABC中,
∵∠ACB=90°,AB=5,sinA=,
∴BC=AB•sinA=5×=4,
∴AC==3.
∵PC=PQ,∴∠PCQ=∠PQC.
∵PE⊥AB即∠QED=90°,
∴∠EQD+∠EDQ=90°.
∵∠ACD+∠PCQ=90°,
∴∠EDQ=∠ACD.
∵∠CDA=∠EDQ,
∴∠ACD=∠CDA,
∴AD=AC=3;
(2)过点Q作QH⊥BC于H,如图1,
∵∠PBE+∠BPE=90°,∠PBE+∠A=90°,
∴∠BPE=∠A,
∴sin∠HPQ=sin∠A=,
∴sin∠HPQ==.
∵PQ=PC=x,∴QH=x,
∴S△PCQ=PC•QH=x•x=x2(≤x<4);
(当E、Q、D共线时,可得x最小值,根据=,解得x=.)
(3)①当PF=PQ时,则有PF=PQ=x=PC.
过点P作PG⊥CF于G,如图2,
则CG=CF.
∵CF⊥AB,
∴S△ABC=AC•BC=AB•CF,
∴CF==,
∴CG=.
∵∠PCG=90°﹣∠FCA=∠A,
∴cos∠PCG=cos∠A=,
∴cos∠PCG==,
∴x=PC=CG=×=2;
②当PF=FQ时,
∵FE⊥PQ,
∴PE=PQ=x,
∴cos∠BPE===,
∴x=.
综上所述:当△PQF是以PF为腰的等腰三角形,CP的长为2或.
11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当△BDP为等腰直角三角形时,求线段PD的长;
(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.
【分析】(1)先确定出点A的坐标,再用待定系数法求出抛物线解析式;
(2)由△BDP为等腰直角三角形,判断出BD=PD,建立m的方程计算出m,从而求出PD;
(3)分点P′落在x轴和y轴两种情况计算即可
【解答】解:(1)∵点C(0,4)在直线y=﹣x+n上,
∴n=4,
∴y=﹣x+4,
令y=0,
∴x=3,
∴A(3,0),
∵抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).
∴c=﹣2,6+3b﹣2=0,
∴b=﹣,
∴抛物线解析式为y=x2﹣x﹣2,
(2)∵点P的横坐标为m,且点P在抛物线上,
∴P(m,m2﹣m﹣2),D(m,﹣2).
若△BDP为等腰直角三角形,则PD=BD.
①当点P在直线BD上方时,PD=m2﹣m.
(ⅰ)若点P在y轴左侧,则m<0,BD=﹣m.
∴m2﹣m=﹣m,
∴m1=0(舍去),m2=(舍去).
(ⅱ)若点P在y轴右侧,则m>0,BD=m.
∴m2﹣m=m,
∴m3=0(舍去),m4=.
②当点P在直线BD下方时,m>0,BD=m,PD=﹣m2+m.
﹣m2+m=m,
∴m5=0(舍去),m6=.
综上所述,m=或m=.
即当△BDP为等腰直角三角形时,PD的长为或.
(3)∵∠PBP'=∠OAC,OA=3,OC=4,
∴AC=5,
∴sin∠PBP'=,cos∠PBP'=,
①当点P'落在x轴上时,过点D'作D'N⊥x轴,垂足为N,交BD于点M,
∠DBD'=∠ND'P'=∠PBP',
如图1,
由旋转知,P'D'=PD=m2﹣m,
在Rt△P'D'N中,cos∠ND'P'==cos∠PBP'=,
∴ND'=(m2﹣m),
在Rt△BD'M中,BD'=﹣m,sin∠DBD'==sin∠PBP'=,
∴D'M=﹣m,
∴ND'﹣MD'=2,
∴(m2﹣m)﹣(﹣m)=2,
∴m=(舍),或m=﹣,
如图2,
同①的方法得,ND'=(m2﹣m),MD'=m
∵ND'+MD'=2,
∴(m2﹣m)+m=2,
∴m=,或m=﹣(舍),
∴P(﹣,)或P(,),
②当点P'落在y轴上时,如图3,
过点D′作D′M⊥x轴,交BD于M,过点P′作P′N⊥y轴,交MD'的延长线于点N,
∴∠DBD′=∠ND′P′=∠PBP′,
同①的方法得,P'N=(m2﹣m),BM=m,
∵P′N=BM,
∴(m2﹣m)=m,
∴m=,
∴P(,).
∴P(﹣,)或P(,)或P(,).
12.综合与探究
如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).
(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;
(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;
(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.
【分析】(1)根据待定系数法求出抛物线解析式即可求出点B坐标,求出直线OD解析式即可解决点E坐标.
(2)抛物线上存在点F使得△FOE≌△
FCE,此时点F纵坐标为﹣4,令y=﹣4即可解决问题.
(3))①如图1中,当OP=OQ时,△OPQ是等腰三角形,过点E作直线ME∥PB,交y轴于点M,交x轴于点H,求出点M、H的坐标即可解决问题.②如图2中,当QO=QP时,△POQ是等腰三角形,先证明CE∥PQ,根据平行线的性质列出方程即可解决问题.
【解答】解:(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),
∴,解得,
∴抛物线解析式为y=x2﹣3x﹣8,
∵y=x2﹣3x﹣8=(x﹣3)2﹣,
∴抛物线对称轴为直线x=3,
又∵抛物线与x轴交于点A、B两点,点A坐标(﹣2,0),
∴点B坐标(8,0).
设直线l的解析式为y=kx,
∵经过点D(6,﹣8),
∴6k=﹣8,
∴k=﹣,
∴直线l的解析式为y=﹣x,
∵点E为直线l与抛物线的交点,
∴点E的横坐标为3,纵坐标为﹣×3=﹣4,
∴点E坐标(3,﹣4).
(2)抛物线上存在点F使得△FOE≌△FCE,
此时点F纵坐标为﹣4,
∴x2﹣3x﹣8=﹣4,
∴x2﹣6x﹣8=0,
x=3,
∴点F坐标(3+,﹣4)或(3﹣,﹣4).
(3)①如图1
中,当OP=OQ时,△OPQ是等腰三角形.
∵点E坐标(3,﹣4),
∴OE==5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H.则=,
∴OM=OE=5,
∴点M坐标(0,﹣5).
设直线ME的解析式为y=k1x﹣5,
∴3k1﹣5=﹣4,
∴k1=,
∴直线ME解析式为y=x﹣5,
令y=0,得x﹣5=0,解得x=15,
∴点H坐标(15,0),
∵MH∥PB,
∴=,即=,
∴m=﹣,
②如图2
中,当QO=QP时,△POQ是等腰三角形.
∵当x=0时,y=x2﹣3x﹣8=﹣8,
∴点C坐标(0,﹣8),
∴CE==5,
∴OE=CE,
∴∠1=∠2,
∵QO=QP,
∴∠1=∠3,
∴∠2=∠3,
∴CE∥PB,
设直线CE交x轴于N,解析式为y=k2x﹣8,
∴3k2﹣8=﹣4,
∴k2=,
∴直线CE解析式为y=x﹣8,
令y=0,得x﹣8=0,
∴x=6,
∴点N坐标(6,0),
∵CN∥PB,
∴=,
∴=,
∴m=﹣.
③OP=PQ时,显然不可能,理由,
∵D(6,﹣8),
∴∠1<∠BOD,
∵∠OQP=∠BOQ+∠ABP,
∴∠PQO>∠1,
∴OP≠PQ,
综上所述,当m=﹣或﹣时,△OPQ是等腰三角形.
13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.
(1)求线段CF的长;
(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;
(3)如果△AMN为等腰直角三角形,求线段FM的长.
【分析】(1)过A作AH⊥BC,于是得到AH=CD=6,解直角三角形即可得到结论;
(2)过M作MP⊥CD于P,MK⊥BC于K,反向延长KM交AD于Q,则KQ⊥AD,解直角三角形求得MK=2x=PC,NP=y﹣2x,MP=CK=5﹣x=QD,于是得到AQ=8﹣(5﹣x)=3+x,QM=6﹣2x,推出△AMQ∽△PMN,根据相似三角形的性质列方程即可得到结论;
(3)①
当M在线段EF上时,根据全等三角形的性质和等量代换得到QM=MP,列方程得到6﹣2x=5﹣x,解方程即可得到结论;②当M在FE的延长线上时,根据已知条件得到△AQM≌△MNH,由全等三角形的性质得到AQ=MH,由(2)知FK=x,CK=5﹣x=MH,MK=2x=CH,列方程即可得到结论.
【解答】解:(1)过A作AH⊥BC,
∴AH=CD=6,
∵tan∠ABC=2,
∴,
∴BH=3,
∴CH=AD=8,
∴AE=,
∴CF=5;
(2)过M作MK⊥BC于K,反向延长KM交AD于Q,则KQ⊥AD,在Rt△FMK中,FM•cos∠EFC=FK=x,
∵∠EFC=∠B,
∴tan∠EFC=2,
∴MK=2x=PC,NP=y﹣2x,MP=CK=5﹣x=QD
,∴AQ=8﹣(5﹣x)=3+x,QM=6﹣2x,
∵∠AMN=90°,
∵∠AMQ=∠PMN,∠AQM=∠MPN=90°,
∴△AMQ∽△PMN,
∴,
解得:y=(0≤x≤1);
(3)①当M在线段EF上时,
∵AM=MN,△AMQ≌△NMP,
∴△AMQ≌△NMP,
∴QM=MP,
∴6﹣2x=5﹣x,
∴x=1,
∴FM=,
②当M在FE的延长线上时,
∵∠AMN=90°,
∴∠AMQ+∠NMH=∠NMH+∠MNH=90°,
∴∠AMQ=∠MNH,
在△AMQ与△NMH中,,
∴△AQM≌△MNH,
∴AQ=MH,由(2)知FK=x,CK=5﹣x=MH,MK=2x,=CH,
∴AQ=DH=2x﹣6,∴2x﹣6=5﹣x,∴,
∴FM==,
14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.
(1)分别求直线l1与x轴,直线l2与AB的交点坐标;
(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;
(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).
【分析】(1)根据坐标轴上点的坐标特征可求直线l1与x轴,直线l2与AB的交点坐标;
(2)分三种情况:①若点A为直角顶点时,点M在第一象限;若点P为直角顶点时,点M在第一象限;③若点M为直角顶点时,点M在第一象限;进行讨论可求点M的坐标;
(3)根据矩形的性质可求N点的横坐标x的取值范围.
【解答】解:(1)直线l1:当y=0时,2x+3=0,x=﹣
则直线l1与x轴坐标为(﹣,0)
直线l2:当y=3时,2x﹣3=3,x=3
则直线l2与AB的交点坐标为(3,3);
(2)①若点A为直角顶点时,点M在第一象限,连结AC,
如图1,∠APB>∠ACB>45°,
∴△APM不可能是等腰直角三角形,
∴点M不存在;
②若点P为直角顶点时,点M在第一象限,如图2,
过点M作MN⊥CB,交CB的延长线于点N,
则Rt△ABP≌Rt△PNM,
∴AB=PN=4,MN=BP,
设M(x,2x﹣3),则MN=x﹣4,
∴2x﹣3=4+3﹣(x﹣4),
x=,
∴M(,);
③若点M为直角顶点时,点M在第一象限,如图3,
设M1(x,2x﹣3),
过点M1作M1G1⊥OA,交BC于点H1,
则Rt△AM1G1≌Rt△PM1H1,
∴AG1=M1H1=3﹣(2x﹣3),
∴x+3﹣(2x﹣3)=4,
x=2
∴M1(2,1);
设M2(x,2x﹣3),
同理可得x+2x﹣3﹣3=4,
∴x=,
∴M2(,);
综上所述,点M的坐标为(,),(2,1),(,);
(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x≤2.
15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);
(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;
(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
【分析】(1)由抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于两点A、B,求得A点的坐标,作DF⊥x轴于F,根据平行线分线段成比例定理求得D的坐标,然后利用待定系数法法即可求得直线l的函数表达式.
(2)设点E(m,a(m+1)(m﹣3)),yAE=k1x+b1,利用待定系数法确定yAE=a(m﹣3)x+a(m﹣3),从而确定S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,根据最值确定a的值即可;
(3)分以AD为对角线、以AC为边,AP为对角线、以AC为边,AQ为对角线三种情况利用矩形的性质确定点P的坐标即可.
【解答】解:(1)令y=0,则ax2﹣2ax﹣3a=0,
解得x1=﹣1,x2=3
∵点A在点B的左侧,
∴A(﹣1,0),
如图1,作DF⊥x轴于F,
∴DF∥OC,
∴=,
∵CD=4AC,
∴==4,
∵OA=1,
∴OF=4,
∴D点的横坐标为4,
代入y=ax2﹣2ax﹣3a得,y=5a,
∴D(4,5a),
把A、D坐标代入y=kx+b得,
解得,
∴直线l的函数表达式为y=ax+a.
(2)如图1,过点E作EN⊥y轴于点N
设点E(m,a(m+1)(m﹣3)),yAE=k1x+b1,
则,
解得:,
∴yAE=a(m﹣3)x+a(m﹣3),M(0,a(m﹣3))
∵MC=a(m﹣3)﹣a,NE=m
∴S△ACE=S△ACM+S△CEM=[a(m﹣3)﹣a]+[a(m﹣3)﹣a]m=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,
∴有最大值﹣a=,
∴a=﹣;
(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,
解得x1=﹣1,x2=4,
∴D(4,5a),
∵y=ax2﹣2ax﹣3a,
∴抛物线的对称轴为x=1,
设P1(1,m),
①若AD是矩形的一条边,
由AQ∥DP知xD﹣xP=xA﹣xQ,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),
m=yD+yQ=21a+5a=26a,则P(1,26a),
∵四边形ADPQ为矩形,∴∠ADP=90°,
∴AD2+PD2=AP2,
∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,
PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,
∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,
即a2=,∵a<0,∴a=﹣,
∴P1(1,﹣).
②若AD是矩形的一条对角线,
则线段AD的中点坐标为(,),Q(2,﹣3a),
m=5a﹣(﹣3a)=8a,则P(1,8a),
∵四边形ADPQ为矩形,∴∠APD=90°,
∴AP2+PD2=AD2,
∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,
PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,
AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,
∴22+(8a)2+32+(3a)2=52+(5a)2,
解得a2=,∵a<0,∴a=﹣,
∴P2(1,﹣4).
综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).
16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求点E坐标及经过O,D,C三点的抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.
【分析】(1)由折叠的性质可求得CE、CO,在Rt△COE中,由勾股定理可求得OE即可得出点E坐标,设AD=m,在Rt△ADE中,由勾股定理可求得m的值,可求得D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;
(2)用t表示出CP、BP的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;
(3)①以EN为对角线,根据对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;
②当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;
③当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案.
【解答】解:(1)∵CE=CB=5,CO=AB=4,
∴在Rt△COE中,
OE==3.
∴E(0,﹣3)
设AD=m,则DE=BD=4﹣m,
∵OE=3,
∴AE=5﹣3=2,
在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,
即m2+22=(4﹣m)2,解得m=,
∴D(﹣,﹣5),
∵C(﹣4,0),O(0,0),
∴设过O、D、C三点的抛物线为y=ax(x+4),
∴﹣5=﹣a(﹣+4),解得a=,
∴抛物线解析式为y=x(x+4)=x2+x;
(2)∵CP=2t,
∴BP=5﹣2t,
∵BD=,DE==,
∴BD=DE,
在Rt△DBP和Rt△DEQ中,,
∴Rt△DBP≌Rt△DEQ(HL),
∴BP=EQ,
∴5﹣2t=t,
∴t=;
(3)∵抛物线的对称为直线x=﹣2,
∴设N(﹣2,n),
又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),
①当EN为对角线,即四边形ECNM是平行四边形时,如图1,
,
则线段EN的中点
横坐标为=﹣1,线段CM中点横坐标为,
∵EN,CM互相平分,
∴=﹣1,解得m=2,
又M点在抛物线上,
∴y=×22+×2=16
∴M(2,16);
②当EM为对角线,即四边形ECMN是平行四边形时,如图2,
,
则线段EM的中点,
横坐标为=m,线段CN中点横坐标为=﹣3,
∵EN,CM互相平分,
∴m=﹣3,解得m=﹣6,
又∵M点在抛物线上,
∴y=×(﹣6)2+×(﹣6)=16,
∴M(﹣6,16);
③当CE为对角线,即四边形EMCN是平行四边形时,
∴设N(﹣2,n),
又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),
∵线段CE的中点坐标的横坐标为﹣2,线段MN的中点坐标的横坐标为
∵CE与MN互相平分,∴=﹣2
解得m=﹣2,
当m=﹣2时,y=×(﹣2)2+×(﹣2)=﹣,
即M(﹣2,﹣).
综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).
17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.
(1)求直线AD的解析式;
(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;
(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.
【分析】(1)先求出C(0,3),A(﹣1,0),B(3,0),再利用配方法得y=﹣(x﹣1)2+4,则抛物线对称轴为直线x=1,于是可确定D(2,3),则可利用待定系数法求直线AD的解析式;
(2)由E(0,1)可判断△OAE为等腰直角三角形,则∠EAO=45°,由于FH∥OA,则可得到△FGH为等腰直角三角形,过点F作FN⊥x轴交AD于N,如图,则△FNH为等腰直角三角形,所以GH=NG,于是得到△FGH周长等于△FGN的周长,由于FG=GN=FN,则△FGN周长=(1+)FN,所以当FN最大时,△FGN周长的最大,设F(x,﹣x2+2x+3),则N(x,x+1),则FN=﹣x2+2x+3﹣x﹣1,利用二次函数的最值问题可得当x=时,FN有最大值,于是△FGN周长的最大值为;
(3)直线AM交y轴于R,M(1,4),利用待定系数法求出直线AM的解析式为y=2x+2,则R(0,2),然后分类讨论:当AQ为矩形AMPQ的对角线,如图1,利用Rt△AOR∽Rt△POA,可计算出OP=,则P点坐标为(0,﹣),接着利用平移可得到Q(2,
),于是由点T和点Q关于AM所在直线对称,根据线段中点坐标公式易得T点坐标为(0,);当AP为矩形APQM的对角线,反向延长QA交y轴于S,如图2,同理可得S点坐标为(0,﹣),易得R点为AM的中点,则R点为PS的中点,所以PM=SA,P(0,),加上PM=AQ,则AQ=AS,于是可判断点Q关于AM的对称点为S,即T点坐标为(0,﹣).
【解答】解:(1)当x=0时,y=﹣x2+2x+3=3,则C(0,3),
当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴抛物线对称轴为直线x=1,
而点D和点C关于直线x=1对称,
∴D(2,3),
设直线AD的解析式为y=kx+b,
把A(﹣1,0),D(2,3)分别代入得,解得,
∴直线AD的解析式为y=x+1;
(2)当x=0时,y=x+1=1,则E(0,1),
∵OA=OE,
∴△OAE为等腰直角三角形,
∴∠EAO=45°,
∵FH∥OA,
∴△FGH为等腰直角三角形,
过点F作FN⊥x轴交AD于N,如图,
∴FN⊥FH,
∴△FNH为等腰直角三角形,
而FG⊥HN,
∴GH=NG,
∴△FGH周长等于△FGN的周长,
∵FG=GN=FN,
∴△FGN周长=(1+)FN,
∴当FN最大时,△FGN周长的最大,
设F(x,﹣x2+2x+3),则N(x,x+1),
∴FN=﹣x2+2x+3﹣x﹣1=﹣(x﹣)2+,
当x=时,FN有最大值,
∴△FGN周长的最大值为(1+)×=,
即△FGH周长的最大值为;
(3)直线AM交y轴于R,y=﹣x2+2x+3=﹣(x﹣1)2+4,则M(1,4)
设直线AM的解析式为y=mx+n,
把A(﹣1,0)、M(1,4)分别代入得,解得,
∴直线AM的解析式为y=2x+2,
当x=0时,y=2x+2=2,则R(0,2),
当AQ为矩形APQM的对角线,如图1,
∵∠RAP=90°,
而AO⊥PR,
∴Rt△AOR∽Rt△POA,
∴AO:OP=OR:OA,即1:OP=2:1,解得OP=,
∴P点坐标为(0,﹣),
∵点A(﹣1,0)向上平移4个单位,向右平移2个单位得到M(1,4),
∴点P(0,﹣)向上平移4个单位,向右平移2个单位得到Q(2,),
∵点T和点Q关于AM所在直线对称,
∴T点坐标为(0,);
当AP为矩形AMPQ的对角线,反向延长QA交y轴于S,如图2,
同理可得S点坐标为(0,﹣),
∵R点为AM的中点,
∴R点为PS的中点,
∴PM=SA,P(0,),
∵PM=AQ,
∴AQ=AS,
∴点Q关于AM的对称点为S,
即T点坐标为(0,﹣).
综上所述,点T的坐标为(0,)或(0,﹣).
18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.
(1)用关于x的代数式表示BQ,DF.
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.
(3)在点P的整个运动过程中,
①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).
【分析】(1)由AQ:AB=3:4,AQ=3x,易得AB=4x,由勾股定理得BQ,再由中位线的性质得AH=BH=AB,求得CD,FD;
(2)利用(1)的结论,易得CQ的长,作OM⊥AQ于点M(如图1),则OM∥AB,由垂径定理得QM=AM=x,由矩形性质得OD=MC,利用矩形面积,求得x,得出结论;
(3)①点P在A点的右侧时(如图1),利用(1)(2)的结论和正方形的性质得2x+4=3x,得AP;点P在A点的左侧时,当点C在Q右侧,0<x<时(如图2),4﹣7x=3x,解得x,易得AP;当时(如图3),7﹣4x=3x,得AP;当点C在Q的左侧时,即x≥(如图4),同理得AP;
②连接NQ,由点O到BN的弦心距为l,得NQ=2,当点N在AB的左侧时(如图5),过点B作BM⊥EG于点M,GM=x,BM=x,易得∠GBM=45°,BM∥AQ,易得AI=AB,求得IQ,由NQ得AP;当点N在AB的右侧时(如图6),过点B作BJ⊥GE于点J,由GJ=x,BJ=4x得tan∠GBJ=,利用(1)(2)中结论得AI=16x,QI=19x,
解得x,得AP.
【解答】解:(1)在Rt△ABQ中,
∵AQ:AB=3:4,AQ=3x,
∴AB=4x,
∴BQ=5x,
∵OD⊥m,m⊥l,
∴OD∥l,
∵OB=OQ,
∴=2x,
∴CD=2x,
∴FD==3x;
(2)∵AP=AQ=3x,PC=4,
∴CQ=6x+4,
作OM⊥AQ于点M(如图1),
∴OM∥AB,
∵⊙O是△ABQ的外接圆,∠BAQ=90°,
∴点O是BQ的中点,
∴QM=AM=x
∴OD=MC=,
∴OE=BQ=,
∴ED=2x+4,
S矩形DEGF=DF•DE=3x(2x+4)=90,
解得:x1=﹣5(舍去),x2=3,
∴AP=3x=9;
(3)①若矩形DEGF是正方形,则ED=DF,
I.点P在A点的右侧时(如图1)
∴2x+4=3x,解得:x=4,
∴AP=3x=12;
II.点P在A点的左侧时,
当点C在Q右侧,
0<x<时(如图2),
∵ED=4﹣7x,DF=3x,
∴4﹣7x=3x,解得:x=,
∴AP=;
当≤x<时(如图3),
∵ED=4﹣7x,DF=3x,
∴4﹣7x=3x,解得:x=(舍去),
当点C在Q的左侧时,即x≥(如图4),
DE=7x﹣4,DF=3x,
∴7x﹣4=3x,解得:x=1,
∴AP=3,
综上所述:当AP为12或或3时,矩形DEGF是正方形;
②连接NQ,由点O到BN的弦心距为l,得NQ=2,
当点N在AB的左侧时(如图5),
过点B作BM⊥EG于点M,
∵GM=x,BM=x,
∴∠GBM=45°,
∴BM∥AQ,
∴AI=AB=4x,
∴IQ=x,
∴NQ==2,
∴x=2,
∴AP=6;
当点N在AB的右侧时(如图6),
过点B作BJ⊥GE于点J,
∵GJ=x,BJ=4x,
∴tan∠GBJ=,
∴AI=16x,
∴QI=19x,
∴NQ==2,
∴x=,
∴AP=,
综上所述:AP的长为6或.
19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.
(1)求b的值以及直线AD与x轴正方向的夹角;
(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△
EFG的周长为l,试用m表示l;
(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.
【分析】(1)将点A(﹣1,0)代入抛物线的解析式可求得b的值,然后可得到抛物线的解析式,从而可求得抛物线的对称轴,再依据对称性可求得D(2,3),B(3,0),最后依据待定系数法求得AD的解析式可求得直线AD与x轴正方向的夹角;
(2)设E(m,﹣m2+2m+3),则F(﹣m2+2m+2,﹣m2+2m+3),EF=﹣m2+m+2.然后证明△EFG为等腰直角三角形,从而得到EF=(1+)EF,于是可求得l与m的关系式;
(3)先利用配方法求得点M的坐标,然后根据①AM为矩形的对角线时,②当AM为矩形的一边时两种情况求解即可.
【解答】解:(1)∵将点A(﹣1,0)代入抛物线的解析式得:﹣1﹣b+3=0,解得:b=2,
∴y=﹣x2+2x+3.
∴抛物线的对称轴为直线x=1.
令x=0得:y=3,则C(0,3).
∵点B与点A、点D与点C分别关于该抛物线的对称轴对称,
∴D(2,3),B(3,0).
设直线AD的解析式为y=kx+b.
∵将A(﹣1,0)、D(2,3)代入得:,解得:k=1,b=1,
∴直线AD的解析式为y=x+1.
∴直线AD与x轴正方向的夹角为45°.
(2)如图1所示:
设E(m,﹣m2+2m+3),则F(﹣m2+2m+2,﹣m2+2m+3),EF=﹣m2+2m+2﹣m=﹣m2+m+2.
∵∠EGF=90°,∠EFG=45°,
∴△EFG为等腰直角三角形.
∴l=EF+FG+EG=EF+EF+EF=(1+)EF=(1+)(﹣m2+m+2)=﹣()m2+(+1)m+2+2.
(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴M(1,4).
①AM为矩形的对角线时,如图2所示:
∵由矩形的性质可知:N为AM的中点,A(﹣1,0),M(1,4),
∴N(0,2).
∵由两点间的距离公式可知:MN==.
∴NQ1=NQ2=,
∴Q1(0,2+),Q2(0,2﹣).
②当AM为矩形的一边时,如图3所示:过Q3作Q3E⊥y轴,垂直为E,过Q4作Q4F⊥y轴,垂足为F.
∵在△ANO中,AO=1,ON=2,
∴tan∠ANO=,
∴tan∠MNP4=,
∴P4MMN=,NP4=MN=.
∴P4Q3=.
∴P4E=P4Q3=1,EQ3=P4Q3=2.
∵OE=OP4﹣P4E=4.5﹣1=3.5,
∴Q3的坐标为(2,3.5).
∵点Q3与Q4关于点N对称,
∴Q4(﹣2,).
综上所述,点Q的坐标为(0,2+),或(0,2﹣)或(2,3.5)或(﹣2,).
20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.
(1)求反比例函数解析式;
(2)联结BO,求∠DBO的正切值;
(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N为顶点的四边形是平行四边形,求点N的坐标.
【分析】(1)先求出C点坐标,再由tan∠CDO=2可得出D点坐标,进而可得出直线y=mx+4的解析式,根据AC:CD=1:2可得出A点坐标,进而得出反比例函数的解析式;
(2)过点O作OE⊥AB于点E,根据直角三角形的面积公式求出OE的长,再由△ODE∽△CDO得出DE的长,根据锐角三角函数的定义即可得出结论;
(3)设M(﹣1,y),N(x,),再分AB、AN、AM为平行四边形的对角线即可得出结论.
【解答】解:(1)∵直线y=mx+4与y轴交与点C,
∴C(0,4).
∵tan∠CDO=2,
∴OD=2,即D(﹣2,0),
∴﹣2m+4=0,解得m=2,CD==2,
∴直线y=mx+4的解析式为y=2x+4.
设A(x,2x+4),
∵AC:CD=1:2,
∴AC=,
∴=,解得x=±1,
∵点A在第一象限,
∴x=1,
∴A(1,6).
∵点A在反比例函数y=的图象上,
∴k=6,
∴反比例函数的解析式为y=;
(2)过点O作OE⊥AB于点E,
∵OD=2,OC=4,CD=2,
∴OE===.
∵∠ODE=∠ODE,∠OED=∠COD,
∴△ODE∽△CDO,
∴=,即DE===.
∵,解得或,
∴B(﹣3,﹣2).
∴BD==,
∴BE=BD+DE=+=,
∴tan∠DBO===.
(3)设M(﹣1,y),N(x,),
∵A(1,6),B(﹣3,﹣2),
∴当AB为平行四边形的对角线时,=,解得x=﹣1,
∴N(﹣1,﹣6);
当AN为平行四边形的对角线时,x+1=﹣3﹣1,解得x=﹣5,
∴N(﹣5,﹣);
当AM为平行四边形的对角线时,0=x﹣3,解得x=3,
∴N(3,2).
综上所述,N(﹣1,﹣6)或(﹣5,﹣)或(3,2).
21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
【分析】(1)设出抛物线解析式,用待定系数法求解即可;
(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;
(3)方法1、先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.
方法2、四边形AENM是平行四边形时,由于知道点E和点N的横坐标,进而得出点E平移到点N时,先向右平移3单位,进而判断出点A到点M向右先平移3个单位,求出点M的横坐标,代入抛物线解析式,即可求出点M坐标,判断出点A再向上平移3个单位得出点M,即可求出点N坐标;四边形AEMN是平行四边形时,同上方法即可得出结论.
【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,
∵抛物线与y轴交于点A(0,5),
∴4a+9=5,
∴a=﹣1,
y=﹣(x﹣2)2+9=﹣x2+4x+5,
(2)当y=0时,﹣x2+4x+5=0,
∴x1=﹣1,x2=5,
∴E(﹣1,0),B(5,0),
设直线AB的解析式为y=mx+n,
∵A(0,5),B(5,0),
∴m=﹣1,n=5,
∴直线AB的解析式为y=﹣x+5;
设P(x,﹣x2+4x+5),
∴D(x,﹣x+5),
∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,
∵AC=4,
∴S四边形APCD=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,
∴当x=﹣=时,
∴即:点P(,)时,S四边形APCD最大=,
(3)方法1、如图,
过M作MH垂直于对称轴,垂足为H,
∵MN∥AE,MN=AE,
∴△HMN≌△AOE,
∴HM=OE=1,
∴M点的横坐标为x=3或x=1,
当x=1时,M点纵坐标为8,
当x=3时,M点纵坐标为8,
∴M点的坐标为M1(1,8)或M2(3,8),
∵A(0,5),E(﹣1,0),
∴直线AE解析式为y=5x+5,
∵MN∥AE,
∴MN的解析式为y=5x+b,
∵点N在抛物线对称轴x=2上,
∴N(2,10+b),
∵AE2=OA2+OE2=26
∵MN=AE
∴MN2=AE2,
∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2
∵M点的坐标为M1(1,8)或M2(3,8),
∴点M1,M2关于抛物线对称轴x=2对称,
∵点N在抛物线对称轴上,
∴M1N=M2N,
∴1+(b+2)2=26,
∴b=3,或b=﹣7,
∴10+b=13或10+b=3
∴当M点的坐标为(1,8)时,N点坐标为(2,13),
当M点的坐标为(3,8)时,N点坐标为(2,3).
方法2,如图1,
∴E(﹣1,0),A(0,5),
∵抛物线的解析式为y=﹣(x﹣2)2+9,
∴抛物线的对称轴为直线x=2,
∴点N的横坐标为2,即:N'(2,0)
①当以点A,E,M,N组成的平行四边形为四边形AENM时,
∵E(﹣1,0),点N的横坐标为2,(N'(2,0)
∴点E到点N向右平移2﹣(﹣1)=3个单位,
∵四边形AENM是平行四边形,
∴点A向右也平移3个单位,
∵A(0,5),
∴M点的横坐标为3,即:M'(3,5),
∵点M在抛物线上,
∴点M的纵坐标为﹣(3﹣2)2+9=8,
∴M(3,8),即:点A再向上平移(8﹣5=3)个单位,
∴点N'再向上平移3个单位,得到点N(2,3),
即:当M点的坐标为(3,8)时,N点坐标为(2,3).
②当以点A,E,M,N组成的平行四边形为四边形AEMN时,
同①的方法得出,当M点的坐标为(1,8)时,N点坐标为(2,13).
22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.
(1)求二次函数的解析式;
(2)求直线AC的表达式;
(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.
【分析】(1)先求得点A与点B的坐标,然后依据待定系数法可求得抛物线的解析式;
(2)先求得抛物线的对称轴为x=﹣1,依据点B与点C关于x=﹣1对称,可求得点C的坐标,然后依据待定系数法可求得直线AC的解析式;
(3)①当CD∥AB时,AC=BC,故点D不存在;②如图1所示:当AD∥
BC时,AB<AC,过点A作BC平行线l,以C为圆心,AB为半径作弧,交l与点D1点,依据点A与D1关于x=﹣1对称可求得点D1的坐标;③如图2所示:BD∥AC时,过点C作CM⊥x轴,过点A作AM⊥y轴,过点B作BF⊥AC,D2E⊥AC.先依据AAS证明△AMC≌△CBF,从而可求得AF=CE=4,于是得到D2B=2,然后再证明BHD2∽△AMC,从而可求得BH=,HD2=,于是可求得点D2的坐标.
【解答】解:(1)∵将x=4代入y=得:y=2,
∴B(4,2).
∵点A在y轴上,且直线AC在y轴上的截距是﹣6,
∴A(0,﹣6).
∵将B(4,2)、A(0,﹣6)代入抛物线的解析式得:,解得:,
∴抛物线的解析式为y=+﹣6.
(2)∵抛物线的对称轴为x=﹣=﹣1.
∴点B关于x=﹣1的对称点C的坐标为(﹣6,2).
设直线AC的解析式为y=kx+b.
∵将点A(0,﹣6)、C(﹣6,2)代入得:,解得:k=﹣,b=﹣6,
∴直线AC的解析式为y=﹣6.
(3)①∵B(4,2)C(﹣6,2),
∴BC=10.
∵A(0,﹣6)、C(﹣6,2),
∴AC==10.
∴AC=BC.
∴当CD∥AB时,不存在点D使得四边形A、B、C、D为顶点的四边形是等腰梯形.
②如图1所示:
当AD∥BC时,AB<AC,过点A作BC平行线l,以C为圆心,AB为半径作弧,交l与点D1点,A与D1关于x=﹣1对称,
∴D1(﹣2,﹣6).
③如图2所示:BD∥AC时,过点C作CM⊥x轴,过点A作AM⊥y轴,过点B作BF⊥AC,D2E⊥AC.
∵CB∥AM,
∴∠BCA=∠CAM.
在△AMC和△CBF中,
,
∴△AMC≌△CBF.
∴CF=AM=6.
∴AF=4.
∵梯形ABD2C是等腰梯形,
∴CE=AF=4.
∴D2B=EF=2.
∵BD2∥AC,
∴∠D2BH=∠BCA.
∵∠BCA=∠CAM,
∴∠D2BH=∠CAM.
又∵∠M=∠D2HB,
∴BHD2∽△AMC.
∴.
∵BD2=2,
∴BH=,HD2=,
∴D2(,).
综上所述,点D的坐标为(﹣2,﹣6)或D2(,).
23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.
(1)求证:AB∥CD;
(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.
【分析】(1)首先求得C和D的坐标,证明=即可证得;
(2)分成PN∥DB和CD∥AB两种情况进行讨论,即可求解.
【解答】(1)证明:∵四边形OMPN是矩形,OM=6,ON=3,
∴P的坐标是(6,3).
∵点C和D都在反比例函数y=的图象上,且点C在PN上,点D在PM上,
∴点C(2,3),点D(6,1).
又∵DB⊥y轴,CA⊥x轴,
∴A的坐标是(2,0),B的坐标是(0,1).
∵BG=2,GD=4,CG=2,AG=1.
∴=,==,
∴=,
∴AB∥CD;
(2)解:①∵PN∥DB,
∴当DE1=BC时,四边形BCE1D是等腰梯形,此时直角△CNB≌直角△E1PD,
∴PE1=CN=2,
∴点E1的坐标是(4,3);
②∵CD∥AB,当E2在直线AB上,DE2=BC=2,四边形BCDE2为等腰梯形,
直线AB的解析式是y=﹣x+1,
∴设点E2(x,﹣x+1),DE2=BC=2,
∴(x﹣6)2+(x)2=8,
解得:x1=,x2=4(舍去).
∴E2的坐标是(,﹣).
24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.
(1)请直接写出抛物线的解析式;
(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;
(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.
【分析】(1)利用待定系数法求出抛物线解析式即可;
(2)首先表示出P,F点坐标,再利用两点之间距离公式得出PD,PF的长,进而求出即可;
(3)根据题意当P、E、F三点共线时,PE+PF最小,进而得出P点坐标以及利用△PDE的面积可以等于4到13所有整数,在面积为12时,a的值有两个,进而得出答案.
【解答】解:(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,
∴C(0,8),A(﹣8,0),
设抛物线解析式为:y=ax2+c,
则,
解得:
故抛物线的解析式为:y=﹣x2+8;
(2)正确,
理由:设P(a,﹣a2+8),则F(a,8),
∵D(0,6),
∴PD===a2+2,
PF=8﹣(﹣a2+8)=a2,
∴PD﹣PF=2;
(3)在点P运动时,DE大小不变,则PE与PD的和最小时,△PDE的周长最小,
∵PD﹣PF=2,∴PD=PF+2,
∴PE+PD=PE+PF+2,
∴当P、E、F三点共线时,PE+PF最小,
此时点P,E的横坐标都为﹣4,
将x=﹣4代入y=﹣x2+8,得y=6,
∴P(﹣4,6),此时△PDE的周长最小,且△PDE的面积为12,点P恰为“好点,
∴△PDE的周长最小时”好点“的坐标为:(﹣4,6),
由(2)得:P(a,﹣a2+8),
∵点D、E的坐标分别为(0,6),(﹣4,0),
①当﹣4≤a<0时,S△PDE=(﹣a+4)(﹣a2+8)﹣[﹣•(﹣a2+8﹣6)=;
∴4<S△PDE≤12,
②当a=0时,S△PDE=4,
③﹣8<a<﹣4时,S△PDE=(﹣a2+8+6)×(﹣a)×﹣×4×6﹣(﹣a﹣4)×(﹣a2+8)×
=﹣a2﹣3a+4,
∴12≤S△PDE≤13,
④当a=﹣8时,S△PDE=12,
∴△PDE的面积可以等于4到13所有整数,在面积为12时,a的值有两个,
所以面积为整数时好点有11个,经过验证周长最小的好点包含这11个之内,所以好点共11个,
综上所述:11个好点,P(﹣4,6).
25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.
(1)求点M的坐标(用含t的代数式表示).
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.
(3)当t为何值时,四边形BNDM的面积最小.
【分析】(1)作ME⊥x轴于E,则∠MEP=90°,先证出∠PME=∠CPO,再证明△MPE≌△PCO,得出ME=PO=t,EP=OC=4,求出OE,即可得出点M的坐标;
(2)连接AM,先证明四边形AEMF是正方形,得出∠MAE=45°=∠BOA,AM∥OB,证出四边形OAMN是平行四边形,即可得出MN=OA=4;
(3)先证明△PAD∽△PEM,得出比例式,得出AD,求出BD,求出四边形BNDM的面积S是关于t的二次函数,即可得出结果.
【解答】解:(1)作ME⊥x轴于E,如图1所示:
则∠MEP=90°,ME∥AB,
∴∠MPE+∠PME=90°,
∵四边形OABC是正方形,
∴∠POC=90°,OA=OC=AB=BC=4,∠BOA=45°,
∵PM⊥CP,
∴∠CPM=90°,
∴∠MPE+∠CPO=90°,
∴∠PME=∠CPO,
在△MPE和△PCO中,,
∴△MPE≌△PCO(AAS),
∴ME=PO=t,EP=OC=4,
∴OE=t+4,
∴点M的坐标为:(t+4,t);
(2)线段MN的长度不发生改变;理由如下:
连接AM,如图2所示:
∵MN∥OA,ME∥AB,∠MEA=90°,
∴四边形AEMF是矩形,
又∵EP=OC=OA,
∴AE=PO=t=ME,
∴四边形AEMF是正方形,
∴∠MAE=45°=∠BOA,
∴AM∥OB,
∴四边形OAMN是平行四边形,
∴MN=OA=4;
(3)∵ME∥AB,
∴△PAD∽△PEM,
∴,
即,
∴AD=﹣t2+t,
∴BD=AB﹣AD=4﹣(﹣t2+t)=t2﹣t+4,
∵MN∥OA,AB⊥OA,
∴MN⊥AB,
∴四边形BNDM的面积S=MN•BD=×4(t2﹣t+4)=(t﹣2)2+6,
∴S是t的二次函数,
∵>0,
∴S有最小值,
当t=2时,S的值最小;
∴当t=2时,四边形BNDM的面积最小.
26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.
【分析】(1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;
(2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,在直角三角形AMD中,求出AM的长,即为DM的长,根据勾股定理求出GM的长,进而确定出DG的长,即为BE的长;
(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.
【解答】解:(1)∵四边形ABCD和四边形AEFG都为正方形,
∴AD=AB,∠DAG=∠BAE=90°,AG=AE,
在△ADG和△ABE中,
,
∴△ADG≌△ABE(SAS),
∴∠AGD=∠AEB,
如图1所示,延长EB交DG于点H,
在△ADG中,∠AGD+∠ADG=90°,
∴∠AEB+∠ADG=90°,
在△EDH中,∠AEB+∠ADG+∠DHE=180°,
∴∠DHE=90°,
则DG⊥BE;
(2)∵四边形ABCD和四边形AEFG都为正方形,
∴AD=AB,∠DAB=∠GAE=90°,AG=AE,
∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,
在△ADG和△ABE中,
∴△ADG≌△ABE(SAS),
∴DG=BE,
如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,
∵BD为正方形ABCD的对角线,
∴∠MDA=45°,
在Rt△AMD中,∠MDA=45°,
∴cos45°=,
∵AD=2,
∴DM=AM=,
在Rt△AMG中,根据勾股定理得:GM==,
∵DG=DM+GM=+,
∴BE=DG=+;
(3)△GHE和△BHD面积之和的最大值为6,理由为:
对于△EGH,点H在以EG为直径的圆上,
∴当点H与点A重合时,△EGH的高最大;
对于△BDH,点H在以BD为直径的圆上,
∴当点H与点A重合时,△BDH的高最大,
则△GHE和△BHD面积之和的最大值为2+4=6.
27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.
(1)求过A,B,C三点的抛物线的解析式;
(2)P为抛物线上一点,它关于原点的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.
【分析】(1)联立两直线解析式可求得B点坐标,由关于原点对称可求得C点坐标,由直线y=﹣2x﹣1可求得A点坐标,再利用待定系数法可求得抛物线解析式;
(2)①当四边形PBQC为菱形时,可知PQ⊥BC,则可求得直线PQ的解析式,联立抛物线解析式可求得P点坐标;②过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,由∠PED=∠AOC,可知当PE最大时,PD也最大,用t可表示出PE的长,可求得取最大值时的t的值.
【解答】解:
(1)联立两直线解析式可得,解得,
∴B点坐标为(﹣1,1),
又C点为B点关于原点的对称点,
∴C点坐标为(1,﹣1),
∵直线y=﹣2x﹣1与y轴交于点A,
∴A点坐标为(0,﹣1),
设抛物线解析式为y=ax2+bx+c,
把A、B、C三点坐标代入可得,解得,
∴抛物线解析式为y=x2﹣x﹣1;
(2)①当四边形PBQC为菱形时,则PQ⊥BC,
∵直线BC解析式为y=﹣x,
∴直线PQ解析式为y=x,
联立抛物线解析式可得,解得或,
∴P点坐标为(1﹣,1﹣)或(1+,1+);
②当t=0时,四边形PBQC的面积最大.
理由如下:
如图,过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,
则S四边形PBQC=2S△PBC=2×BC•PD=BC•PD,
∵线段BC长固定不变,
∴当PD最大时,四边形PBQC面积最大,
又∠PED=∠AOC(固定不变),
∴当PE最大时,PD也最大,
∵P点在抛物线上,E点在直线BC上,
∴P点坐标为(t,t2﹣t﹣1),E点坐标为(t,﹣t),
∴PE=﹣t﹣(t2﹣t﹣1)=﹣t2+1,
∴当t=0时,PE有最大值1,此时PD有最大值,即四边形PBQC的面积最大.
28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.
(1)∠OBA= 90 °.
(2)求抛物线的函数表达式.
(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?
【分析】(1)利用圆周角定理,直径所对的圆周角等于90°,即可得出答案;
(2)利用(1)中的结论易得OB是的垂直平分线,易得点B,点C的坐标,由点O,点B的坐标易得OB所在直线的解析式,从而得出点E的坐标,用待定系数法得抛物线的解析式;
(3)利用(2)的结论易得点P的坐标,分类讨论①若点P在CD的左侧,延长OP交CD于Q,如右图2,易得OP所在直线的函数关系式,表示出Q点的纵坐标,
得QE的长,表示出四边形POAE的面积;②若点P在CD的右侧,延长AP交CD于Q,如右图3,易得AP所在直线的解析式,从而求得Q点的纵坐标,得QE求得四边形POAE的面积,当P在CD右侧时,四边形POAE的面积最大值为16,此时点P的位置就一个,令=16,解得p,得出结论.
【解答】解:(1)∵OA是⊙O的直径,
∴∠OBA=90°,
故答案为:90;
(2)连接OC,如图1所示,
∵由(1)知OB⊥AC,又AB=BC,
∴OB是AC的垂直平分线,
∴OC=OA=10,
在Rt△OCD中,OC=10,CD=8,
∴OD=6,
∴C(6,8),B(8,4)
∴OB所在直线的函数关系为y=x,
又∵E点的横坐标为6,
∴E点纵坐标为3,
即E(6,3),
抛物线过O(0,0),E(6,3),A(10,0),
∴设此抛物线的函数关系式为y=ax(x﹣10),把E点坐标代入得:
3=6a(6﹣10),
解得a=﹣.
∴此抛物线的函数关系式为y=﹣x(x﹣10),即y=﹣x2+x;
(3)设点P(p,﹣p2+p),
①若点P在CD的左侧,延长OP交CD于Q,如右图2,
OP所在直线函数关系式为:y=(﹣p+)x
∴当x=6时,y=,即Q点纵坐标为,
∴QE=﹣3=,
S四边形POAE
=S△OAE+S△OPE
=S△OAE+S△OQE﹣S△PQE
=•OA•DE+QE•OD﹣•QE•Px•
=×10×3+×(﹣p+)×6﹣•()•(6﹣p),
=
②若点P在CD的右侧,延长AP交CD于Q,如右图3,
P(p,﹣p2+p),A(10,0)
∴设AP所在直线方程为:y=kx+b,把P和A坐标代入得,
,
解得.
∴AP所在直线方程为:y=x+,
∴当x=6时,y=•6+=P,即Q点纵坐标为P,
∴QE=P﹣3,
∴S四边形POAE
=S△OAE+S△APE
=S△OAE+S△AQE﹣S△PQE
=•OA•DE+•QE•DA﹣•QE•(Px﹣6)
=×10×3+•QE•(DA﹣Px+6)
=15+•(p﹣3)•(10﹣p)
=
=,
∴当P在CD右侧时,四边形POAE的面积最大值为16,此时点P的位置就一个,
令=16,解得,p=3±,
∴当P在CD左侧时,四边形POAE的面积等于16的对应P的位置有两个,
综上所知,以P、O、A、E为顶点的四边形面积S等于16时,相应的点P有且只有3个.
29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.
【分析】(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;
(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在∠DAB外角平分线上时,同理可求得P点坐标;
(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ的长,可设出F点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.
【解答】解:
(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),
∴,解得,
∴抛物线的解析式y=﹣x2﹣2x+3,
(2)存在,
当P在∠DAB的平分线上时,如图1,作PM⊥AD,
设P(﹣1,m),则PM=PD•sin∠ADE=(4﹣m),PE=m,
∵PM=PE,
∴(4﹣m)=m,m=﹣1,
∴P点坐标为(﹣1,﹣1);
当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,
设P(﹣1,n),则PN=PD•sin∠ADE=(4﹣n),PE=﹣n,
∵PN=PE,
∴(4﹣n)=﹣n,n=﹣﹣1,
∴P点坐标为(﹣1,﹣﹣1);
综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);
(3)∵抛物线的解析式y=﹣x2﹣2x+3,
∴B(1,0),
∴S△EBC=EB•OC=3,
∵2S△FBC=3S△EBC,
∴S△FBC=,
过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,
∵S△FBC=S△BQH﹣S△BFH﹣S△CFQ=HB•HQ﹣BH•HF﹣QF•FM=BH(HQ﹣HF)﹣QF•FM=BH•QF﹣QF•FM=QF•(BH﹣FM)=FQ•OB=FQ=,
∴FQ=9,
∵BC的解析式为y=﹣3x+3,
设F(x0,﹣x02﹣2x0+3),
∴﹣3x0+3+x02+2x0﹣3=9,
解得:x0=或(舍去),
∴点F的坐标是(,),
∵S△ABC=6>,
∴点F不可能在A点下方,
综上可知F点的坐标为(,).
30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B
(1)求m的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;
(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.
【分析】(1)根据题意得出△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,得出1﹣4m≠0,解不等式即可;
(2)y=m(x2﹣2x﹣3)+x+1,故只要x2﹣2x﹣3=0,那么y的值便与m无关,解得x=3或x=﹣1(舍去,此时y=0,在坐标轴上),故定点为(3,4);
(3)由|AB|=|xA﹣xB|得出|AB|=|﹣4|,由已知条件得出≤<4,得出0<|﹣4|≤,因此|AB|最大时,||=,解方程得出m=8,或m=(舍去),即可得出结果.
【解答】(1)解:当m=0时,函数为一次函数,不符合题意,舍去;
当m≠0时,
∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,
∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,
∴1﹣4m≠0,
∴m≠,
∴m的取值范围为m≠0且m≠;
(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,
∴y=m(x2﹣2x﹣3)+x+1,
抛物线过定点说明在这一点y与m无关,
显然当x2﹣2x﹣3=0时,y与m无关,
解得:x=3或x=﹣1,
当x=3时,y=4,定点坐标为(3,4);
当x=﹣1时,y=0,定点坐标为(﹣1,0),
∵P不在坐标轴上,
∴P(3,4);
(3)解:|AB|=|xA﹣xB|=====||=|﹣4|,
∵<m≤8,
∴≤<4,
∴﹣≤﹣4<0,
∴0<|﹣4|≤,
∴|AB|最大时,||=,
解得:m=8,或m=(舍去),
∴当m=8时,|AB|有最大值,
此时△ABP的面积最大,没有最小值,
则面积最大为:|AB|yP=××4=.
31.问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<
BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;
(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;
(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点H在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.
【解答】解:(1)如图1,△ADC即为所求;
(2)存在,理由:作E关于CD的对称点E′,
作F关于BC的对称点F′,
连接E′F′,交BC于G,交CD于H,连接FG,EH,
则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,
由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,
∴AF′=6,AE′=8,
∴E′F′=10,EF=2,
∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,
∴在边BC、CD上分别存在点G、H,
使得四边形EFGH的周长最小,
最小值为2+10;
(3)能裁得,
理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,
∴∠1=∠2,
在△AEF与△BGF中,,
∴△AEF≌△BGF,
∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,
∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),
∴AF=BG=1,BF=AE=2,
∴DE=4,CG=5,
连接EG,
作△EFG关于EG的对称△EOG,
则四边形EFGO是正方形,∠EOG=90°,
以O为圆心,以OE为半径作⊙O,
∵CE=CG=5,
则∠EHG=45°的点在⊙O上,
连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,
连接EH′、GH′,则∠EH′G=45°,
此时,四边形EFGH′是要想裁得符合要求的面积最大的,
∴C在线段EG的垂直平分线上,
∴点F,O,H′,C在一条直线上,
∵EG=,
∴OF=EG=,
∵CF=2,
∴OC=,
∵OH′=OE=FG=,
∴OH′<OC,
∴点H′在矩形ABCD的内部,
∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件,
这个部件的面积=EG•FH′=××(+)=5+,
∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m2.
32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.
(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.
①点B的坐标为( 10 、 0 ),BK的长是 8 ,CK的长是 10 ;
②求点F的坐标;
③请直接写出抛物线的函数表达式;
(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△
NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
【分析】(1)①根据四边形OCKB是矩形以及对称轴公式即可解决问题.
②在RT△BKF中利用勾股定理即可解决问题.
③设OA=AF=x,在RT△ACF中,AC=8﹣x,AF=x,CF=4,利用勾股定理即可解决问题.
(2)不变.S1•S2=289.由△GHN∽△MHG,得=,得到GH2=HN•HM,求出GH2,根据S1•S2=•OG•HN••OG•HM即可解决问题.
【解答】解:(1)如图1中,①∵抛物线y=x2﹣3x+m的对称轴x=﹣=10,
∴点B坐标(10,0),
∵四边形OBKC是矩形,
∴CK=OB=10,KB=OC=8,
故答案分别为10,0,8,10.
②在RT△FBK中,∵∠FKB=90°,BF=OB=10,BK=OC=8,
∴FK==6,
∴CF=CK﹣FK=4,
∴点F坐标(4,8).
③设OA=AF=x,
在RT△ACF中,∵AC2+CF2=AF2,
∴(8﹣x)2+42=x2,
∴x=5,
∴点A坐标(0,5),代入抛物线y=x2﹣3x+m得m=5,
∴抛物线为y=x2﹣3x+5.
(2)不变.S1•S2=289.
理由:如图2中,在RT△EDG中,∵GE=EO=17,ED=8,
∴DG===15,
∴CG=CD﹣DG=2,
∴OG===2,
∵GP⊥OM,MH⊥OG,
∴∠NPM=∠NHG=90°,
∵∠HNG+∠HGN=90°,∠PNM+∠PMN=90°,∠HNG=∠PNM,
∴∠HGN=∠NMP,
∵∠NMP=∠HMG,∠GHN=∠GHM,
∴△GHN∽△MHG,
∴=,
∴GH2=HN•HM,
∵GH=OH=,
∴HN•HM=17,
∵S1•S2=•OG•HN••OG•HM=(•2)2•17=289.
33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D
(1)若m=3,试求四边形CC1B1B面积S的最大值;
(2)若点B1恰好落在y轴上,试求的值.
【分析】(1)如图1,易证S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,从而可得S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9,根据二次函数的最值性就可解决问题;
(2)如图2,易证△AOD∽△B1OB,根据相似三角形的性质可得OB1=,然后在Rt△AOB1中运用勾股定理就可解决问题.
【解答】解:(1)如图1,
∵▱ABCD与四边形AB1C1D关于直线AD对称,
∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,
∴BC∥AD∥B1C1,CC1∥BB1,
∴四边形BCEF、B1C1EF是平行四边形,
∴S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,
∴S▱BCC1B1=2S▱BCDA.
∵A(n,0)、B(m,0)、D(0,2n)、m=3,
∴AB=m﹣n=3﹣n,OD=2n,
∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,
∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.
∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;
(2)当点B1恰好落在y轴上,如图2,
∵DF⊥BB1,DB1⊥OB,
∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,
∴∠B1DF=∠OBB1.
∵∠DOA=∠BOB1=90°,
∴△AOD∽△B1OB,
∴=,
∴=,
∴OB1=.
由轴对称的性质可得AB1=AB=m﹣n.
在Rt△AOB1中,
n2+()2=(m﹣n)2,
整理得3m2﹣8mn=0.
∵m>0,∴3m﹣8n=0,
∴=.
34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.
(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;
(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;
(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.
【分析】(1)将A、C两点坐标代入解析式即可求出a、c,将解析式配成顶点式即可得到对称轴方程和顶点坐标;
(2)先由C、M两点坐标求出直线CM解析式,进而求出D点坐标,由于C、N两点关于抛物线对称轴对称,则CN∥
AD,同时可求出N点坐标,然后得出CN=AD,结论显然;
(3)设出P点纵坐标,表示出MP的长度,过点P作PH⊥DM于H,表示出PH的长度,在直角三角形PAE中用勾股定理列出方程,解之即得答案.
【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)和点C(0,3),
∴,
∴,
∴y=﹣x2+2x+3=﹣(x﹣1)2+4,
对称轴为直线x=1,顶点M(1,4);
(2)如图1,
∵点C关于直线l的对称点为N,
∴N(2,3),
∵直线y=kx+b经过C、M两点,
∴,
∴,
∴y=x+3,
∵y=x+3与x轴交于点D,
∴D(﹣3,0),
∴AD=2=CN
又∵AD∥CN,
∴CDAN是平行四边形;
(3)设P(1,a),过点P作PH⊥DM于H,连接PA、PB,如图2,
则MP=4﹣a,
又∠HMP=45°,
∴HP=AP=,
Rt△APE中,AP2=AE2+PE2,
即:,解得:,
∴P1(1,﹣4+2),P2(1,﹣4﹣2).
35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.
(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);
(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;
(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.
【分析】
(1)由于ED=EA,因此点E在线段AD的垂直平分线上,因而线段AD的垂直平分线与线段AB的交点即为圆心E(如图1),然后只需解Rt△EHA就可解决问题;
(2)如图2,易证△GCF∽△FHE,然后运用相似三角形的性质就可解决问题;
(3)由于点G在射线BC上,故需分点G在线段BC上(如图2、图3),点G在线段BC的延长线上(如图4),然后只需求出CG和GE就可解决问题.
【解答】解:(1)作线段AD的垂直平分线,交AB于E,交AC于H,如图1,
点E即为所求作.
在Rt△EHA中,AH=AD=4,tanA=,
∴EH=AH•tanA=4×=3,AE==5.
∴圆E的半径长为5;
(2)当点G的边BC上时,如图2所示.
∵∠C=90°,FG⊥EF,EH⊥AC,
∴∠C=∠EHF=90°,∠CFG=∠FEH=90°﹣∠EFH,
∴△GCF∽△FHE,
∴=,
∴=,
∴y=﹣x2+6x﹣(4≤x<14);
(3)①当点G在BC上时,
Ⅰ.当∠FGE=∠CGF时,
过点E作EN⊥BC于N,如图2,
∵∠C=∠GFE=90°,
∴△GCF∽△GFE,
∴=.
∵△GCF∽△FHE,
∴=,
∴=,
∴FC=FH=CH=(14﹣4)=5,
∴x=AF=5+4=9,
∴y=CG=,
∴rG=GC=,rE=5.
∴GN=﹣3=,EN=CH=10,
∴EG==,
∴rG﹣rE<GE<rG+rE,
∴⊙E与⊙G相交;
Ⅱ.当∠FGE=∠CFG时,如图3,
则有GE∥AC,
∵∠C=∠AHE=90°,∴CG∥EH,
∴四边形CGEH是矩形,
∴rG=CG=EH=3,GE=CH=10,
∴GE>rE+rG,
∴⊙E与⊙G外离;
②当点G在BC延长线上时,设GE交AC于M,如图4,
∵∠EHF=∠GCF=90°,∠GFC=∠HEF=90°﹣∠HFE,
∴△EHF∽△FCG,
∴=,
∴=,
∴y=(x﹣4)(x﹣14).
∵∠FGE=∠CFG,∠FGE+∠MEF=90°,∠GFM+∠MFE=90°,
∴MG=MF,∠MEF=∠MFE,
∴ME=MF,∴MG=ME.
在△GCM和△EHM中,
∴△GCM≌△EHM,
∴CG=HE=3,CM=MH=5,
∴rG=3,EG=2GM=2,
∴GE>rG+rE,
∴⊙E与⊙G外离.
综上所述:当△EFG与△FCG相似时,⊙E与⊙G相交或外离.
36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.
点C是弧AB上的点,联结PC、DC.
(1)联结BD交弧AB于E,当a=2时,求BE的长;
(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;
(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.
【分析】(1)如图1中,连接OE,作OM⊥BC于M.设⊙O半径为r,先列出关于r的方程求出r,再求出OM,在RT△BOM中利用勾股定理即可.
(2)如图2中,⊙C与⊙P相切于点M,连接DM与⊙P交于点Q,连接PQ、CQ、OC,想分别证明点A是△CMD的重心即可.
(3)如图3中,连接OC、PB、AC,想办法证明△OBC是等边三角形,再利用方程即可解决问题.
【解答】解:(1)如图1中,连接OE,作OM⊥BC于M.设⊙O半径为r,
∵OA2=OP•OD,
∴r2=(r﹣1)(r+2),
∴r=2,
在RT△BOD中,∵OB=2,OD=4,
∴BD===2,
∵•OD•OB=•BD•OM,
∴OM=,
在RT△BOM中,∵,
∴BM==,
∵OM⊥BE,
∴BM=ME,BE=2BM=.
(2)如图2中,⊙C与⊙P相切于点M,连接DM与⊙P交于点Q,连接PQ、CQ、OC.
∵OA2=OP•OD,
∴OC2=OP•OD,
∴=,
∵∠COP=∠DOC,
∴△COP∽△DOC,
∴∠OCP=ODC,
∵OC=OA,
∴∠OCA=∠OAC,
∴∠OCP+∠PCA=∠ACD+∠ODC,
∴∠PCA=∠DCA,
∵CM=CD,∠CQM=90°(直径CM所对的圆周角是直角),
∴∠MCQ=∠DCQ,
∴C、A、Q共线,
∵MP=PC,MQ=QD,
∴PQ∥CD,PQ=CD,
∴PA:AD=PQ:CD=1:2,
∴AD=2PA=2.
(3)如图3中,连接OC、PB、AC.
∵∵OA2=OP•OD,
∴OC2=OP•OD,
∴=,
∵∠COP=∠DOC,
∴△COP∽△DOC,
∴∠OCP=ODC,
同理△BOP∽△DOB,∠OBP=∠D,
∴∠OBP=∠OCP,
∴O、B、C、P四点共圆,
∴∠BOP+∠BCP=90°,
∵PC•OA=BC•OP,
∴=,∵∠BOP=∠BCP,
∴△PBO∽△PBC,
∴===1,
∴OB=BC=OC,PC=OP,设BO=BC=OC=r,
∴△BOC是等边三角形,
∴∠OBC=60°,∠D=30°,
在RT△PCD中,∵PC=OP=r﹣1,
∴PD=2PC=2r﹣2,
∴AD=2r﹣3,
∵OD=OB,
∴r+2r﹣3=r,
∴r=,
∴扇形OAB的半径长为.
37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).
(1)如图1,连接DQ平分∠BDC时,t的值为 1 ;
(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;
(3)请你继续进行探究,并解答下列问题:
①证明:在运动过程中,点O始终在QM所在直线的左侧;
②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.
【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.
(2)由△QTM∽△BCD,得=列出方程即可解决.
(3)①如图2中,延长QM交CD于E,求出DE、DO利用差值比较即可解决问题.
②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.
【解答】(1)解:如图1中,∵四边形ABCD是矩形,
∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,
∴BD===10,
∵PQ⊥BD,
∴∠BPQ=90°=∠C,
∵∠PBQ=∠DBC,
∴△PBQ∽△CBD,
∴==,
∴==,
∴PQ=3t,BQ=5t,
∵DQ平分∠BDC,QP⊥DB,QC⊥DC,
∴QP=QC,
∴3t=8﹣5t,
∴t=1,
故答案为:1.
(补充:直接利用角平分线的性质得到DP=DC=6,BP=4,从而t=1)
(2)解:如图2中,作MT⊥BC于T.
∵MC=MQ,MT⊥CQ,
∴TC=TQ,
由(1)可知TQ=(8﹣5t),QM=3t,
∵MQ∥BD,
∴∠MQT=∠DBC,
∵∠MTQ=∠BCD=90°,
∴△QTM∽△BCD,
∴=,
∴=,
∴t=(s),
∴t=s时,△CMQ是以CQ为底的等腰三角形.
(3)①证明:如图2中,延长QM交CD于E,
∵EQ∥BD,
∴=,
∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,
∵DO=3t,
∴DE﹣DO=t﹣3t=t>0,
∴点O在直线QM左侧.
②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.
∵EC=(8﹣5t),DO=3t,
∴OE=6﹣3t﹣(8﹣5t)=t,
∵OH⊥MQ,
∴∠OHE=90°,
∵∠HEO=∠CEQ,
∴∠HOE=∠CQE=∠CBD,
∵∠OHE=∠C=90°,
∴△OHE∽△BCD,
∴=,
∴=,
∴t=.
∴t=s时,⊙O与直线QM相切.
连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,
在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,
∴∠OFH=∠FOH=45°,
∴OH=FH=,FO=FM=,
∴MH=(+1),
由=得到HE=,
由=得到EQ=,
∴MH=MQ﹣HE﹣EQ=4﹣﹣=,
∴(+1)≠,矛盾,
∴假设不成立.
∴直线PM与⊙O不相切.
38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.
(1)求抛物线的解析式;
(2)若PA:PB=3:1,求一次函数的解析式;
(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.
【分析】(1)根据抛物线的对称轴为x=1可求出m的值,再将点A的坐标代入抛物线的解析式中求出n值,此题得解;
(2)根据P、A、B三点共线以及PA:PB=3:1结合点A的坐标即可得出点B的纵坐标,将其代入抛物线解析式中即可求出点B的坐标,再根据点A、B的坐标利用待定系数法即可求出直线AP的解析式;
(3)假设存在,设出点C的坐标,依照题意画出图形,根据角的计算找出∠DCF=∠EPF,再通过解直角三角形找出关于r的一元一次方程,解方程求出r值,将其代入点C的坐标中即可得出结论.
【解答】解:(1)∵抛物线的对称轴为x=1,
∴﹣=1,解得:m=.
将点A(2,3)代入y=﹣x2+x+n中,
3=﹣1+1+n,解得:n=3,
∴抛物线的解析式为y=﹣x2+x+3.
(2)∵P、A、B三点共线,PA:PB=3:1,且点A、B位于点P的同侧,
∴yA﹣yP=3yB﹣yP,
又∵点P为x轴上的点,点A(2,3),
∴yB=1.
当y=1时,有﹣x2+x+3=1,
解得:x1=﹣2,x2=4(舍去),
∴点B的坐标为(﹣2,1).
将点A(2,3)、B(﹣2,1)代入y=kx+b中,
,解得:,
∴一次函数的解析式y=x+2.
(3)假设存在,设点C的坐标为(1,r).
∵k>0,
∴直线AP的解析式为y=x+2.
当y=0时,x+2=0,
解得:x=﹣4,
∴点P的坐标为(﹣4,0),
当x=1时,y=,
∴点D的坐标为(1,).
令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示.
∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,
∴∠DCF=∠EPF.
在Rt△CDF中,tan∠DCF=tan∠EPF=,CD=﹣r,
∴CD=CF=|r|=﹣r,
解得:r=5﹣10或r=﹣5﹣10.
故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5﹣10)或(1,﹣5﹣10).
39.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.
(1)这条抛物线的对称轴是 2 ,直线PQ与x轴所夹锐角的度数是 45° ;
(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;
(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.
【分析】(1)把抛物线的解析式化成顶点式即可求得对称轴;求得直线与坐标轴的交点坐标,即可证得直线和坐标轴围成的图形是等腰直角三角形,从而求得直线PQ与x轴所夹锐角的度数;
(2)分三种情况分别讨论根据已知条件,通过△OBE∽△ABF对应边成比例即可求得;
(3)①过点C作CH∥x轴交直线PQ于点H,可得△CHQ是等腰三角形,进而得出AD⊥PH,得出DQ=DH,从而得出PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH是等腰直角三角形,得出PH=PM,因为当PM最大时,PH最大,通过求得PM的最大值,从而求得PH的最大值;由①可知:PD+PH≤6
,设PD=a,则DQ﹣a,得出PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,当点P在抛物线的顶点时,a=3,得出PD•DQ≤18.
【解答】方法一:
解:(1)∵y=x2﹣4x=(x﹣2)2﹣4,
∴抛物线的对称轴是x=2,
∵直线y=x+m,
∴直线与坐标轴的交点坐标为(﹣m,0),(0,m),
∴交点到原点的距离相等,
∴直线与坐标轴围成的三角形是等腰直角三角形,
∴直线PQ与x轴所夹锐角的度数是45°,
故答案为x=2、45°.
(2)如图
设直线PQ交x轴于点B,分别过O点,A点作PQ的垂线,垂足分别是E、F,显然当点B在OA的延长线时,S△POQ=S△PAQ不成立;
①当点B落在线段OA上时,如图①,
==,
由△OBE∽△ABF得,==,
∴AB=3OB,
∴OB=OA,
由y=x2﹣4x得点A(4,0),
∴OB=1,
∴B(1,0),
∴1+m=0,
∴m=﹣1;
②当点B落在线段AO的延长线上时,如图②,同理可得OB=OA=2,
∴B(﹣2,0),
∴﹣2+m=0,
∴m=2,
综上,当m=﹣1或2时,S△POQ=S△PAQ;
(3)①过点C作CH∥x轴交直线PQ于点H,如图③,可得△CHQ是等腰三角形,
∵∠CDQ=45°+45°=90°,
∴AD⊥PH,
∴DQ=DH,
∴PD+DQ=PH,
过P点作PM⊥CH于点M,则△PMH是等腰直角三角形,
∴PH=PM,
∴当PM最大时,PH最大,
∴当点P在抛物线顶点处时,PM最大,此时PM=6,
∴PH的最大值为6,
即PD+DQ的最大值为6.
②由①可知:PD+DQ≤6,
设PD=a,则DQ﹣a,
∴PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,
∵当点P在抛物线的顶点时,a=3,
∴PD•DQ≤18.
∴PD•DQ的最大值为18.
方法二:
(1)略.
(2)过点A作x轴垂线,与直线PQ交于点D,设直线PQ与y轴交于点C,
∴C(0,m),D(4,4+m),
∵S△POQ=(Qx﹣Px)(QY﹣CY),
S△PAQ=(Qx﹣Px)(DY﹣AY),
∵,
∴,
∴m1=2,m2=﹣1.
(3)①设P(t,t2﹣4t)(0<t<4),
∵KPQ=1,∴lPQ:y=x+t2﹣5t,
∵C(2,2),A(4,0),
∴lAC:y=﹣x+4,
∴DX=,DY=,
∴Q(2,t2﹣5t+2),
∵PQ⊥AC,垂足为点D,
∴点Q关于直线AC的对称点Q′(﹣t2+5t+2,2),
欲使PD+DQ取得最大值,只需PQ′有最大值,
PQ′==,
显然当t=2时,PQ′的最大值为6,
即PD+DQ的最大值为6,
②∵(PD+DQ)2≥4•PD•DQ,
∴PD•DQ≤==18,
∴PD•DQ的最大值为18.
40.抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.
(1)求抛物线的函数表达式;
(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;
(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.
【分析】(1)将点A、B的坐标代入抛物线的解析式,得到关于a、b的方程,从而可求得a、b的值;
(2)设点P的坐标为P(m,m2﹣6m+4),由平行四边形的面积为30可知S△CBP=15,由S△CBP=S梯形CEDP﹣S△CEB﹣S△PBD,得到关于m的方程求得m的值,从而可求得点P的坐标;
(3)首先证明△EAB∽△NMB,从而可得到NB=,当MB为圆的直径时,NB有最大值.
【解答】解:(1)将点A、B的坐标代入抛物线的解析式得:,
解得:.
∴抛物线得解析式为y=x2﹣6x+4.
(2)如图所示:
设点P的坐标为P(m,m2﹣6m+4)
∵平行四边形的面积为30,
∴S△CBP=15,即:S△CBP=S梯形CEDP﹣S△CEB﹣S△PBD.
∴m(5+m2﹣6m+4+1)﹣×5×5﹣(m﹣5)(m2﹣6m+5)=15.
化简得:m2﹣5m﹣6=0,
解得:m=6,或m=﹣1.
∴点P的坐标为(6,4)或(﹣1,11).
(3)连接AB、EB.
∵AE是圆的直径,
∴∠ABE=90°.
∴∠ABE=∠MBN.
又∵∠EAB=∠EMB,
∴△EAB∽△NMB.
∵A(1,﹣1),B(5,﹣1),
∴点O1的横坐标为3,
将x=0代入抛物线的解析式得:y=4,
∴点C的坐标为(0,4).
设点O1的坐标为(3,m),
∵O1C=O1A,
∴,
解得:m=2,
∴点O1的坐标为(3,2),
∴O1A=,
在Rt△ABE中,由勾股定理得:BE===6,
∴点E的坐标为(5,5).
∴AB=4,BE=6.
∵△EAB∽△NMB,
∴.
∴.
∴NB=.
∴当MB为直径时,MB最大,此时NB最大.
∴MB=AE=2,
∴NB==3.
41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为 24 ;
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
【分析】(1)如图①,过A作AE⊥
BC,可得出四边形AECD为矩形,得到EC=AD,BE=BC﹣EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形BMC面积即可;
(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,求出即可;
(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD相切,根据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最大,cos∠BPC的值最小,连接OB,求出即可.
【解答】解:(1)如图①,过A作AE⊥BC,
∴四边形AECD为矩形,
∴EC=AD=8,BE=BC﹣EC=12﹣8=4,
在Rt△ABE中,∠ABE=60°,BE=4,
∴AB=2BE=8,AE==4,
则S△BMC=BC•AE=24;
故答案为:24;
(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,
∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,
∵AD∥BC,AE⊥BC,∠ABC=60°,
∴过点A作AE⊥BC,则CE=AD=8,
∴BE=4,AE=BE•tan60°=4,
∴CC′=2CD=2AE=8,
∵BC=12,
∴BC′==4,
∴△BNC周长的最小值为4+12;
(3)如图③所示,存在点P,使得cos∠BPC的值最小,
作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,
∵AD∥BC,
∴圆O与AD相切于点P,
∵PQ=DC=4>6,
∴PQ>BQ,
∴∠BPC<90°,圆心O在弦BC的上方,
在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,
∴∠BPC=∠BMC≥∠BP′C,
∴∠BPC最大,cos∠BPC的值最小,
连接OB,则∠BON=2∠BPN=∠BPC,
∵OB=OP=4﹣OQ,
在Rt△BOQ中,根据勾股定理得:OQ2+62=(4﹣OQ)2,
解得:OQ=,
∴OB=,
∴cos∠BPC=cos∠BOQ==,
则此时cos∠BPC的值为.
42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.
(1)求∠EPF的大小;
(2)若AP=6,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.
【分析】(1)过点P作PG⊥EF于G,解直角三角形即可得到结论;
(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,Rt△PME≌Rt△PNF,问题即可得证;
(3)如图3,当EF⊥AC,点P在EF的右侧时,AP有最大值,当EF⊥AC,点P在EF的左侧时,AP有最小值解直角三角形即可解决问题.
【解答】解:(1)如图1,过点P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=,
在△FPG中,sin∠FPG===,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,
∵四边形ABCD是菱形,
∴AD=AB,DC=BC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,
,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,
∴AM=AP•cos30°=3,同理AN=3,
∴AE+AF=(AM﹣EM)+(AN+NF)=6;
(3)如图3,当EF⊥AC,点P在EF的右侧时,AP有最大值,
当EF⊥AC,点P在EF的左侧时,AP有最小值,
设AC与EF交于点O,
∵PE=PF,
∴OF=EF=2,
∵∠FPA=60°,
∴OP=2,
∵∠BAD=60°,
∴∠FAO=30°,
∴AO=6,
∴AP=AO+PO=8,
同理AP′=AO﹣OP=4,
∴AP的最大值是8,最小值是4.
43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+
2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.
(1)填空:点A的坐标为( 0 , 2 ),点B的坐标为( ﹣3 , 0 ),点C的坐标为( 1 , 0 ),点D的坐标为( ﹣1 , );
(2)点P是线段BC上的动点(点P不与点B、C重合)
①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;
②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;
③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.
【分析】(1)令x=0,求得A(0,2),令y=0,求得B(﹣3,0),C(1,0),由y=﹣x2﹣x+2转化成顶点式可知D(﹣1,);
(2)①设P(n,0),则E(n,﹣n2﹣n+2),根据已知条件得出﹣n2﹣n+2=1﹣n,解方程即可求得E的坐标;
②根据直线ED和EA的斜率可知直线与坐标轴的交角相等,从而求得与坐标轴构成的三角形是等腰三角形,根据等腰三角形的性质即可求得EF的长;
③根据题意得:当△PQR为△ABC垂足三角形时,周长最小,所以P与O重合时,周长最小,作O关于AB的对称点E,作O关于AC的对称点F,连接EF交AB于Q,交AC于R,此时△PQR的周长PQ+QR+PR=EF,然后求得E、F的坐标,根据勾股定理即可求得.
【解答】解:(1)令x=0,则y=2,
∴A(0,2),
令y=0,则﹣x2﹣x+2=0,解得x1=﹣3,x2=1(舍去),
∴B(﹣3,0),C(1,0),
由y=﹣x2﹣x+2=﹣(x+1)2+可知D(﹣1,),
故答案为:0、2,﹣3、0,1、0,﹣1、;
(2)①设P(n,0),则E(n,﹣n2﹣n+2),
∵PE=PC,
∴﹣n2﹣n+2=1﹣n,解得n1=﹣,n2=1(舍去),
∴当n=﹣时,1﹣n=,
∴E(﹣,),
②如图1,设直线DE与x轴交于M,与y轴交于N,直线EA与x轴交于K,
根据E、D的坐标求得直线ED的斜率为,根据E、A的坐标求得直线EA的斜率为﹣,
∴△MEK是以MK为底边的等腰三角形,△AEN是以AN为底边的等腰三角形,
∵到EA和ED的距离相等的点F在顶角的平分线上,
根据等腰三角形的性质可知,EF是E点到坐标轴的距离,
∴EF=或;
(3)根据题意得:当△PQR为△ABC垂足三角形时,周长最小,所以P与O重合时,周长最小,
如图2,作O关于AB的对称点E,作O关于AC的对称点F,连接EF交AB于Q,交AC于R,
此时△PQR的周长PQ+QR+PR=EF,
∵A(0,2),B(﹣3,0),C(1,0),
∴AB==,AC==,
∵S△AOB=×OE×AB=OA•OB,
∴OE=,
∵△OEM∽△ABO,
∴==,即==,
∴OM=,EM=
∴E(﹣,),
同理求得F(,),
即△PQR周长的最小值为EF==.
44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.
(1)当AN平分∠MAB时,求DM的长;
(2)连接BN,当DM=1时,求△ABN的面积;
(3)当射线BN交线段CD于点F时,求DF的最大值.
【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;
(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;
(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.
【解答】解:(1)由折叠性质得:△ANM≌△ADM,
∴∠MAN=∠DAM,
∵AN平分∠MAB,∠MAN=∠NAB,
∴∠DAM=∠MAN=∠NAB,
∵四边形ABCD是矩形,
∴∠DAB=90°,
∴∠DAM=30°,
∴DM=AD•tan∠DAM=3×tan30°=3×=;
(2)延长MN交AB延长线于点Q,如图1所示:
∵四边形ABCD是矩形,
∴AB∥DC,
∴∠DMA=∠MAQ,
由折叠性质得:△ANM≌△ADM,
∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,
∴∠MAQ=∠AMQ,
∴MQ=AQ,
设NQ=x,则AQ=MQ=1+x,
∵∠ANM=90°,
∴∠ANQ=90°,
在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,
∴(x+1)2=32+x2,
解得:x=4,
∴NQ=4,AQ=5,
∵AB=4,AQ=5,
∴S△NAB=S△NAQ=×AN•NQ=××3×4=;
(3)过点A作AH⊥BF于点H,如图2所示:
∵四边形ABCD是矩形,
∴AB∥DC,
∴∠HBA=∠BFC,
∵∠AHB=∠BCF=90°,
∴△ABH∽△BFC,
∴=,
∵AH≤AN=3,AB=4,
∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:
由折叠性质得:AD=AH,
∵AD=BC,
∴AH=BC,
在△ABH和△BFC中,,
∴△ABH≌△BFC(AAS),
∴CF=BH,
由勾股定理得:BH===,
∴CF=,
∴DF的最大值=DC﹣CF=4﹣.
45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.
发现:的长与的长之和为定值l,求l:
思考:点M与AB的最大距离为 ,此时点P,A间的距离为 2 ;
点M与AB的最小距离为 ,此时半圆M的弧与AB所围成的封闭图形面积为 ﹣ ;
探究:当半圆M与AB相切时,求的长.
(注:结果保留π,cos35°=,cos55°=)
【分析】(1)半圆O的长度是固定不变的,由于PQ也是定值,所以的长度也是固定值,所以与的长之和为定值;
(2)过点M作MC⊥AB于点C,当C与O重合时,M与AB的距离最大,此时,∠AOP=60°,AP=2;当Q与B重合时,M与AB的距离最小,此时围成的封闭图形面积可以用扇形DMB的面积减去△DMB的面积即可;
(3)当半圆M与AB相切时,此时MC=1,且分以下两种情况讨论,当C在线段OA上;当C在线段OB上,然后分别计出的长.
【解答】解:发现:如图1,连接OP、OQ,
∵AB=4,
∴OP=OQ=2,
∵PQ=2,
∴△OPQ是等边三角形,
∴∠POQ=60°,
∴==,
又∵半圆O的长为:π×4=2π,
∴+=2π﹣π=,
∴l=π;
思考:如图2,过点M作MC⊥AB于点C,
连接OM,
∵OP=2,PM=1,
∴由勾股定理可知:OM=,
当C与O重合时,
M与AB的距离最大,最大值为,
连接AP,
此时,OM⊥AB,
∴∠AOP=60°,
∵OA=OP,
∴△AOP是等边三角形,
∴AP=2,
如图3,当Q与B重合时,
连接DM,
∵∠MOQ=30°,
∴MC=OM=,
此时,M与AB的距离最小,最小值为,
设此时半圆M与AB交于点D,
DM=MB=1,
∵∠ABP=60°,
∴△DMB是等边三角形,
∴∠DMB=60°,
∴扇形DMB的面积为:=,
△DMB的面积为:MC•DB=××1=,
∴半圆M的弧与AB所围成的封闭图形面积为:﹣;
探究:当半圆M与AB相切时,
此时,MC=1,
如图4,当点C在线段OA上时,
在Rt△OCM中,
由勾股定理可求得:OC=,
∴cos∠AOM==,
∴∠AOM=35°,
∵∠POM=30°,
∴∠AOP=∠AOM﹣∠POM=5°,
∴==,
当点C在线段OB上时,
此时,∠BOM=35°,
∵∠POM=30°,
∴∠AOP=180°﹣∠POM﹣∠BOM=115°
∴==,
综上所述,当半圆M与AB相切时,的长为或.
46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.
填空:当点A位于 CB的延长线上 时,线段AC的长取得最大值,且最大值为 a+b (用含a,b的式子表示)
(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.
【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;
(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;
(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.
【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,
∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,
故答案为:CB的延长线上,a+b;
(2)①CD=BE,
理由:∵△ABD与△ACE是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△CAD与△EAB中,,
∴△CAD≌△EAB,
∴CD=BE;
②∵线段BE长的最大值=线段CD的最大值,
由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,
∴最大值为BD+BC=AB+BC=4;
(3)连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,
则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵AN=AP=2,
∴最大值为2+3;
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴PE=AE=,
∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,
∴P(2﹣,).
47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).
【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;
(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化;
(3)①由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;
②可将求d1+d2最大值转化为求AC的最小值.
【解答】解:(1)令x=0代入y=﹣3x+3,
∴y=3,
∴B(0,3),
把B(0,3)代入y=ax2﹣2ax+a+4,
∴3=a+4,
∴a=﹣1,
∴二次函数解析式为:y=﹣x2+2x+3;
(2)令y=0代入y=﹣x2+2x+3,
∴0=﹣x2+2x+3,
∴x=﹣1或3,
∴抛物线与x轴的交点横坐标为﹣1和3,
∵M在抛物线上,且在第一象限内,
∴0<m<3,
令y=0代入y=﹣3x+3,
∴x=1,
∴A的坐标为(1,0),
由题意知:M的坐标为(m,﹣m2+2m+3),
S=S四边形OAMB﹣S△AOB
=S△OBM+S△OAM﹣S△AOB
=×m×3+×1×(﹣m2+2m+3)﹣×1×3
=﹣(m﹣)2+
∴当m=时,S取得最大值.
(3)①由(2)可知:M′的坐标为(,);
②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,
根据题意知:d1+d2=BF,
此时只要求出BF的最大值即可,
∵∠BFM′=90°,
∴点F在以BM′为直径的圆上,
设直线AM′与该圆相交于点H,
∵点C在线段BM′上,
∴F在优弧上,
∴当F与M′重合时,
BF可取得最大值,
此时BM′⊥l1,
∵A(1,0),B(0,3),M′(,),
∴由勾股定理可求得:AB=,M′B=,M′A=,
过点M′作M′G⊥AB于点G,
设BG=x,
∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,
∴﹣(﹣x)2=﹣x2,
∴x=,
cos∠M′BG==,
∵l1∥l′,
∴∠BCA=90°,
∠BAC=45°
方法二:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,则BD=d1,ME=d2,
∵S△ABM′=×AC×(d1+d2)
当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM′时取得最小值.
根据B(0,3)和M′(,)可得BM′=,
∵S△ABM=×AC×BM′=,∴AC=,
当AC⊥BM′时,cos∠BAC===,
∴∠BAC=45°.
48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.
(1)求N的函数表达式;
(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;
(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.
【分析】(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=﹣1,求出二次函数N的顶点坐标即可解决问题.
(2)由PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2•PO2+2可知OP最大时,PA2+PB2最大,求出OP的最大值即可解决问题.
(3)画出函数图象即可解决问题.
【解答】(1)解:二次函数y=x2
﹣1的图象M沿x轴翻折得到函数的解析式为y=﹣x2+1,此时顶点坐标(0,1),
将此图象向右平移2个单位长度后再向上平移8个单位长度得到二次函数图象N的顶点为(2,9),
故N的函数表达式y=﹣(x﹣2)2+9=﹣x2+4x+5.
(2)∵A(﹣1,0),B(1,0),
∴PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2•PO2+2,
∴当PO最大时PA2+PB2最大.如图,延长OC与⊙C交于点P,此时OP最大,
∴OP的最大值=OC+PC=+1,
∴PA2+PB2最大值=2(+1)2+2=38+4.
(3)M与N所围成封闭图形如图所示,
由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.
49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.
(1)求抛物线对应的二次函数的表达式;
(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;
(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.
【分析】(1)用待定系数法求出抛物线解析式,
(2)先求出直线OA对应的一次函数的表达式为y=x.再求出直线BD的表达式为y=x﹣2.最后求出交点坐标C,D即可;
(3)先判断出C'D与x轴的交点即为点P,它使得△
PCD的周长最小.作辅助线判断出△C'PO∽△C'DQ即可.
【解答】解:(1)∵抛物线顶点为A(,1),
设抛物线解析式为y=a(x﹣)2+1,
将原点坐标(0,0)在抛物线上,
∴0=a()2+1
∴a=﹣.
∴抛物线的表达式为:y=﹣x2+x.
(2)令y=0,得 0=﹣x2+x,
∴x=0(舍),或x=2
∴B点坐标为:(2,0),
设直线OA的表达式为y=kx,
∵A(,1)在直线OA上,
∴k=1,
∴k=,
∴直线OA对应的一次函数的表达式为y=x.
∵BD∥AO,
设直线BD对应的一次函数的表达式为y=x+b,
∵B(2,0)在直线BD上,
∴0=×2+b,
∴b=﹣2,
∴直线BD的表达式为y=x﹣2.
由
得交点D的坐标为(﹣,﹣3),
令x=0得,y=﹣2,
∴C点的坐标为(0,﹣2),
由勾股定理,得:OA=2=OC,AB=2=CD,OB=2=OD.
在△OAB与△OCD中,
,
∴△OAB≌△OCD.
(3)点C关于x轴的对称点C'的坐标为(0,2),
∴C'D与x轴的交点即为点P,它使得△PCD的周长最小.
过点D作DQ⊥y,垂足为Q,
∴PO∥DQ.
∴△C'PO∽△C'DQ.
∴,
∴,
∴PO=,
∴点P的坐标为(﹣,0).