- 538.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2010年辽宁省沈阳市中考数学试卷
一、选择题(共8小题,每小题3分,满分24分)
1.(3分)如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是( )
A. B. C. D.
2.(3分)为了响应国家“发展低碳经济,走进低碳生活”的号召,到目前为止沈阳市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为( )
A.60×104 B.60×105 C.6×104 D.0.6×106
3.(3分)下列运算正确的是( )
A.x2+x3=x5 B.x8÷x2=x4 C.3x﹣2x=1 D.(x2)3=x6
4.(3分)下列事件为必然事件的是( )
A.某射击运动员射击一次,命中靶心
B.任意买一张电影票,座位号是偶数
C.从一个只有红球的袋子里面摸出一个球是红球
D.掷一枚质地均匀的硬币落地后正面朝上
5.(3分)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是( )
A.(﹣1,1) B.(﹣1,2) C.(1,2) D.(2,1)
6.(3分)反比例函数y=﹣的图象在( )
A.第一,二象限 B.第二,三象限 C.第一,三象限 D.第二,四象限
7.(3分)在半径为12的⊙O中,60°圆心角所对的弧长是( )
A.6π B.4π C.2π D.π
8.(3分)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为( )
A.9 B.12 C.15 D.18
二、填空题(共8小题,每小题4分,满分32分)
9.(4分)一组数据:3,4,4,6,这组数据的极差为 .
10.(4分)计算:×﹣()0= .
11.(4分)分解因式:x2+2xy+y2= .
12.(4分)一次函数y=﹣3x+6中,y的值随x值增大而 .
13.(4分)不等式组的解集是 .
14.(4分)如图,在▱ABCD中,点E在边BC上,BE:EC=1:2,连接AE交BD于点F,则△BFE的面积与△DFA的面积之比为 .
15.(4分)在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为 .
16.(4分)若等腰梯形ABCD的上,下底之和为2,并且两条对角线所交的锐角为60°,则等腰梯形ABCD的面积为 .
三、解答题(共9小题,满分94分)
17.(8分)先化简,再求值:+,其中x=﹣1.
18.(8分)小吴在放假期间去上海参观世博会,小吴根据游客流量,决定第一天从中国馆(A),日本馆(B),西班牙馆(C)中随机选一个馆参观,第二天从法国馆(D),沙特馆(E),芬兰馆(F),中随机选一个馆参加,请你用列表法或画树状图(树形图)法,求小吴恰好第一天参观中国馆(A)且第二天参观芬兰馆(F)的概率.(各国家馆可用对应的字母表示)
19.(10分)如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.
20.(10分)2010年4月14日,国内成品油价格迎来今年的首次提价,某市93号汽油的价格由6.25元/升涨到了6.52元/升,某报纸调查员就“关于汽油涨价对用车会造成的影响”这一问题向有机动车的私家车车主进行了问卷调查,并制作了统计图表的一部分如下:
车主的态度
百分比
A.没有影响
4%
B.影响不大,还可以接受
P
C.有影响,现在用车次数减少了
52%
D.影响很大,需要放弃用车
m
E.不关心这个问题
10%
(1)结合上述统计图表可得:p= ,m= ;
(2)根据以上信息,请补全条形统计图;
(3)2010年4月末,若该市有机动车的私家车车主约200000人,根据上述信息,请你估计一下持有“影响不大,还可以接受”这种态度的车主约有多少人?
21.(10分)如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.
(1)求证:∠CDE=2∠B;
(2)若BD:AB=:2,求⊙O的半径及DF的长.
22.(10分)阅读材料:
(1)等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线,
例如,如图1,把海拔高度是50米,100米,150米的点分别连接起来,就分别形
成50米,100米,150米三条等高线.
(2)利用等高线地形图求坡度的步骤如下:(如图2)
步骤一:根据两点A,B所在的等高线地形图,分别读出点A,B的高度;A,B两点的
铅直距离=点A,B的高度差;
步骤二:量出AB在等高线地形图上的距离为d个单位,若等高线地形图的比例尺为
1:m,则A,B两点的水平距离=dn;
步骤三:AB的坡度==;
请按照下列求解过程完成填空.
某中学学生小明和小丁生活在山城,如图3,小明每天上学从家A经过B沿着公路AB,BP到学校P,小丁每天上学从家C沿着公路CP到学校P.该山城等高线地形图的比例尺为:1:50000,在等高线地形图上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米
(1)分别求出AB,BP,CP的坡度(同一段路中间坡度的微小变化忽略不计);
(2)若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在
到之间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在到之间
时,小明和小丁步行的平均速度均约为1米/秒)
解:(1)AB的水平距离=1.8×50000=90000(厘米)=900(米),AB的坡度==;
BP的水平距离=3.6×50000=180000(厘米)=1800(米),BP的坡度==;
CP的水平距离=4.2×50000=210000(厘米)=2100(米),CP的坡度= .
(2)因为<<,所以小明在路段AB,BP上步行的平均速度均约为1.3米/秒,因为
,所以小丁在路段CP上步行的平均速度约为 米/秒,斜坡AB的距离==906(米),斜坡BP的距离==1811(米),斜坡CP的距离==2121(米),所以小明从家道学校的时间==2090(秒).小丁从家到学校的时间约为 秒.因此,
先到学校.
23.(12分)某公司有甲,乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售,根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数).该农产品在收获过程中甲,乙两基地累积产量分别占两基地累积总产量的百分比和甲,乙两基地累积存入仓库的量分别占甲,乙两基地的累积产量的百分比如下表:
项目
百分比
种植基地
该基地的累积产量占两基地累积总产量的百分比
该基地累积存入仓库的量占该基地的累积产量的百分比
甲
60%
85%
乙
40%
22.5%
(1)请用含y的代数式分别表示在收获过程中甲,乙两个基地累积存入仓库的量;
(2)设在收获过程中甲,乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3)在(2)的基础上,若仓库内原有该种农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出该种农产品总量m(吨)与收获天x(天)满足函数关系m=﹣x2+13.2x﹣1.6(1≤x≤10且x为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?
24.(12分)如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥
直线a于点N,连接PM,PN.
(1)延长MP交CN于点E(如图2).
①求证:△BPM≌△CPE;
②求证:PM=PN;
(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.
25.(14分)如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.
2010年辽宁省沈阳市中考数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题3分,满分24分)
1.(3分)(2010•沈阳)如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是( )
A. B. C. D.
【解答】解:从上面看易得:第一层最左边有1个正方形,第二层有3个正方形.故选A.
2.(3分)(2010•沈阳)为了响应国家“发展低碳经济,走进低碳生活”的号召,到目前为止沈阳市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为( )
A.60×104 B.60×105 C.6×104 D.0.6×106
【解答】解:60 000=6×104.故选C.
3.(3分)(2013•呼和浩特)下列运算正确的是( )
A.x2+x3=x5 B.x8÷x2=x4 C.3x﹣2x=1 D.(x2)3=x6
【解答】解:A、x2与x3不是同类项不能合并,故选项错误;
B、应为x8÷x2=x6,故选项错误;
C、应为3x﹣2x=x,故选项错误;
D、(x2)3=x6,正确.
故选D.
4.(3分)(2010•沈阳)下列事件为必然事件的是( )
A.某射击运动员射击一次,命中靶心
B.任意买一张电影票,座位号是偶数
C.从一个只有红球的袋子里面摸出一个球是红球
D.掷一枚质地均匀的硬币落地后正面朝上
【解答】解:A、某射击运动员射击一次,命中靶心,为不确定事件,即随机事件,不符合题意;
B、任意买一张电影票,座位号是偶数,为不确定事件,即随机事件,不符合题意;
C、从一个只有红球的袋子里面摸出一个球是红球,是必然事件,符合题意;
D、掷一枚质地均匀的硬币落地后正面朝上,为不确定事件,即随机事件,不符合题意.
故选C.
5.(3分)(2010•沈阳)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是( )
A.(﹣1,1) B.(﹣1,2) C.(1,2) D.(2,1)
【解答】解:如图,
将Rt△ABC绕点C按顺时针方向旋转90°得到Rt△FEC,
∴根据旋转的性质得CA=CF,∠ACF=90°,
而A(﹣2,1),
∴点A的对应点F的坐标为(﹣1,2).
故选B.
6.(3分)(2010•沈阳)反比例函数y=﹣的图象在( )
A.第一,二象限 B.第二,三象限 C.第一,三象限 D.第二,四象限
【解答】解:∵反比例函数y=﹣中,k=﹣15<0,
∴函数图象的两个分支分别在第二、四象限.
故选D.
7.(3分)(2010•沈阳)在半径为12的⊙O中,60°圆心角所对的弧长是( )
A.6π B.4π C.2π D.π
【解答】解:L===4π,
故选B.
8.(3分)(2011•西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为( )
A.9 B.12 C.15 D.18
【解答】解:∵△ABC是等边三角形,
∴∠B=∠C=60°,AB=BC;
∴CD=BC﹣BD=AB﹣3;
∴∠BAD+∠ADB=120°
∵∠ADE=60°,
∴∠ADB+∠EDC=120°,
∴∠DAB=∠EDC,
又∵∠B=∠C=60°,
∴△ABD∽△DCE;
∴,
即;
解得AB=9.
故选:A.
二、填空题(共8小题,每小题4分,满分32分)
9.(4分)(2010•沈阳)一组数据:3,4,4,6,这组数据的极差为 3 .
【解答】解:数据中最大的数是6,最小的数是3,所以极差为6﹣3=3.
∴这组数据的极差为3.
故填3.
10.(4分)(2010•沈阳)计算:×﹣()0= .
【解答】解:原式=2﹣1=﹣1.
11.(4分)(2010•沈阳)分解因式:x2+2xy+y2= (x+y)2 .
【解答】解:x2+2xy+y2=(x+y)2.
12.(4分)(2010•沈阳)一次函数y=﹣3x+6中,y的值随x值增大而 减小 .
【解答】解:∵一次函数y=﹣3x+6中,﹣3<0,
∴y的值随x值增大而减小.
13.(4分)(2010•沈阳)不等式组的解集是 ﹣1≤x≤1 .
【解答】解:由(1)去括号得,4≥2﹣2x,
移项、合并同类项得,﹣2x≤2,
系数化为1得,x≥﹣1.
由(2)移项、合并同类项得,﹣3x≥﹣3,
系数化为1得,x≤1.
故原不等式组的解集为:﹣1≤x≤1.
14.(4分)(2010•沈阳)如图,在▱ABCD中,点E在边BC上,BE:EC=1:2,连接AE交BD于点F,则△BFE的面积与△DFA的面积之比为 1:9 .
【解答】解:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC;
∵BE:EC=1:2,
∴BE:BC=1:3,即BE:AD=1:3;
易知:△BEF∽△DAF,
∴S△BFE:S△DFA=BE2:AD2=1:9.
15.(4分)(2010•沈阳)在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为 (9,81) .
【解答】解:设An(x,y).
∵当n=1时,A1(1,1),即x=1,y=12;
当n=2时,A2(2,4),即x=2,y=22;
当n=3时,A3(3,9),即x=3,y=32;
当n=4时,A1(4,16),即x=4,y=42;
…
∴当n=9时,x=9,y=92,即A9(9,81).故答案填(9,81).
16.(4分)(2010•沈阳)若等腰梯形ABCD的上,下底之和为2,并且两条对角线所交的锐角为60°,则等腰梯形ABCD的面积为 .
【解答】解:分两种情况考虑:过O作OE⊥AB,反向延长交CD于F.
(i)当∠AOB=∠COD=60°.
∵四边形ABCD是等腰梯形,
∴OA=OB,OC=OD.
∵∠AOB=∠COD=60°,
∴△OAB,△OCD均是等边三角形.
设AB=x,则CD=2﹣x.
∴OE=x,OF=(2﹣x),
∴EF=,
∴S梯形ABCD=(AB+CD)•EF=×2×=;
(ii)当∠AOD=∠BOC=60°.
∴∠AOB=∠COD=120°,
∴∠OAB=∠OBA=∠ODC=∠OCD=30°.
设AB=x,则CD=2﹣x.
∴OE=x,OF=(2﹣x),
∴EF=OE+OF=,
∴S梯形ABCD=(AB+CD)•EF=×2×=.
综上,等腰梯形ABCD的面积为或.
三、解答题(共9小题,满分94分)
17.(8分)(2010•沈阳)先化简,再求值:+,其中x=﹣1.
【解答】解:原式=(3分)
=;
当x=﹣1时,原式=. (8分)
18.(8分)(2010•沈阳)小吴在放假期间去上海参观世博会,小吴根据游客流量,决定第一天从中国馆(A),日本馆(B),西班牙馆(C)中随机选一个馆参观,第二天从法国馆(D),沙特馆(E),芬兰馆(F),中随机选一个馆参加,请你用列表法或画树状图(树形图)法,求小吴恰好第一天参观中国馆(A)且第二天参观芬兰馆(F)的概率.(各国家馆可用对应的字母表示)
【解答】解:列树状图:
共有9种可能出现的结果,并且每种结果出现的可能性相同,其中小吴恰好第一天参观A且第二天参观F这2个场馆的结果有一种(A,F),
∴P(小吴恰好第一天参观A且第二天参观F)=.
19.(10分)(2010•沈阳)如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.
【解答】证明:∵点E,F分别为AB,AD的中点
∴AE=AB,AF=AD,
又∵四边形ABCD是菱形,
∴AB=AD,
∴AE=AF,
又∵菱形ABCD的对角线AC与BD相交于点O
∴O为BD的中点,
∴OE,OF是△ABD的中位线.
∴OE∥AD,OF∥AB,
∴四边形AEOF是平行四边形,
∵AE=AF,
∴四边形AEOF是菱形.
20.(10分)(2010•沈阳)2010年4月14日,国内成品油价格迎来今年的首次提价,某市93号汽油的价格由6.25元/升涨到了6.52元/升,某报纸调查员就“关于汽油涨价对用车会造成的影响”这一问题向有机动车的私家车车主进行了问卷调查,并制作了统计图表的一部分如下:
车主的态度
百分比
A.没有影响
4%
B.影响不大,还可以接受
P
C.有影响,现在用车次数减少了
52%
D.影响很大,需要放弃用车
m
E.不关心这个问题
10%
(1)结合上述统计图表可得:p= 24% ,m= 10% ;
(2)根据以上信息,请补全条形统计图;
(3)2010年4月末,若该市有机动车的私家车车主约200000人,根据上述信息,请你估计一下持有“影响不大,还可以接受”这种态度的车主约有多少人?
【解答】解:(1)P对应扇形图中的B,所以p=24%,m对应扇形图中的D,所以m=10%;
(2)如图;
(3)200000×24%=48000(人)
∴可以估计持有“影响不大,还可以接受”这种态度的车主约有48000人.
21.(10分)(2010•沈阳)如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.
(1)求证:∠CDE=2∠B;
(2)若BD:AB=:2,求⊙O的半径及DF的长.
【解答】(1)证明:连接OD.
∵直线CD与⊙O相切于点D,
∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.
又∵DF⊥AB,∴∠DEO=∠DEC=90°.
∴∠EOD+∠ODE=90°,
∴∠CDE=∠EOD.
又∵∠EOD=2∠B,
∴∠CDE=2∠B.
(2)解:连接AD.
∵AB是⊙O的直径,
∴∠ADB=90°.
∵BD:AB=,
∴,
∴∠B=30°.
∴∠AOD=2∠B=60°.
又∵∠CDO=90°,
∴∠C=30°.
在Rt△CDO中,CD=10,
∴OD=10tan30°=,
即⊙O的半径为.
在Rt△CDE中,CD=10,∠C=30°,
∴DE=CDsin30°=5.
∵DF⊥AB于点E,
∴DE=EF=DF.
∴DF=2DE=10.
22.(10分)(2010•沈阳)阅读材料:
(1)等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线,
例如,如图1,把海拔高度是50米,100米,150米的点分别连接起来,就分别形
成50米,100米,150米三条等高线.
(2)利用等高线地形图求坡度的步骤如下:(如图2)
步骤一:根据两点A,B所在的等高线地形图,分别读出点A,B的高度;A,B两点的
铅直距离=点A,B的高度差;
步骤二:量出AB在等高线地形图上的距离为d个单位,若等高线地形图的比例尺为
1:m,则A,B两点的水平距离=dn;
步骤三:AB的坡度==;
请按照下列求解过程完成填空.
某中学学生小明和小丁生活在山城,如图3,小明每天上学从家A经过B沿着公路AB,BP到学校P,小丁每天上学从家C沿着公路CP到学校P.该山城等高线地形图的比例尺为:1:50000,在等高线地形图上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米
(1)分别求出AB,BP,CP的坡度(同一段路中间坡度的微小变化忽略不计);
(2)若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在
到之间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在到之间
时,小明和小丁步行的平均速度均约为1米/秒)
解:(1)AB的水平距离=1.8×50000=90000(厘米)=900(米),AB的坡度==;
BP的水平距离=3.6×50000=180000(厘米)=1800(米),BP的坡度==;
CP的水平距离=4.2×50000=210000(厘米)=2100(米),CP的坡度= .
(2)因为<<,所以小明在路段AB,BP上步行的平均速度均约为1.3米/秒,因为
,所以小丁在路段CP上步行的平均速度约为 1 米/秒,斜坡AB的距离==906(米),斜坡BP的距离==1811(米),斜坡CP的距离==2121(米),所以小明从家道学校的时间==2090(秒).小丁从家到学校的时间约为 2121 秒.因此, 小明 先到学校.
【解答】解:①由题意知:CP的坡度为:=,
②因为:,
③所用小丁的速度为1米/秒,
④小丁所用的时间为:2121÷1=2121(秒),
⑤由于2090<2121,所用小明先到学校.
23.(12分)(2010•沈阳)某公司有甲,乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售,根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数).该农产品在收获过程中甲,乙两基地累积产量分别占两基地累积总产量的百分比和甲,乙两基地累积存入仓库的量分别占甲,乙两基地的累积产量的百分比如下表:
项目
百分比
种植基地
该基地的累积产量占两基地累积总产量的百分比
该基地累积存入仓库的量占该基地的累积产量的百分比
甲
60%
85%
乙
40%
22.5%
(1)请用含y的代数式分别表示在收获过程中甲,乙两个基地累积存入仓库的量;
(2)设在收获过程中甲,乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3)在(2)的基础上,若仓库内原有该种农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出该种农产品总量m(吨)与收获天x(天)满足函数关系m=﹣x2+13.2x﹣1.6(1≤x≤10且x为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?
【解答】解:(1)①甲基地累积存入仓库的量:
85%×60%y=0.51y(吨)
②乙基地累积存入仓库的量:
22.5%×40%y=0.09y(吨)
(2)p=0.51y+0.09y=0.6y
∵y=2x+3
∴p=0.6(2x+3)=1.2x+1.8
(3)设在此收获期内仓库库存该种农产品T吨.
T=42.6+p﹣m
=42.6+1.2x+1.8﹣(﹣x2+13.2x﹣1.6)
=x2﹣12x+46=(x﹣6)2+10
∵1>0
∴抛物线的开口向上
又∵1≤x≤10且x为整数,
∴当x=6时,T的最小值为10;
∴在此收获期内连续销售6天,该农产品库存达最低值,最低库存为10吨.
24.(12分)(2010•沈阳)如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.
(1)延长MP交CN于点E(如图2).
①求证:△BPM≌△CPE;
②求证:PM=PN;
(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.
【解答】(1)证明:①如图2:
∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMA=∠CNM=90°,
∴BM∥CN,
∴∠MBP=∠ECP,
又∵P为BC边中点,
∴BP=CP,
又∵∠BPM=∠CPE,
∴△BPM≌△CPE,
②∵△BPM≌△CPE,
∴PM=PE
∴PM=ME,
∴在Rt△MNE中,PN=ME,
∴PM=PN.
(2)解:成立,如图3.
证明:延长MP与NC的延长线相交于点E,
∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMN=∠CNM=90°
∴∠BMN+∠CNM=180°,
∴BM∥CN
∴∠MBP=∠ECP,
又∵P为BC中点,
∴BP=CP,
又∵∠BPM=∠CPE,
在△BPM和△CPE中,
,
∴△BPM≌△CPE,
∴PM=PE,
∴PM=ME,
则Rt△MNE中,PN=ME,
∴PM=PN.
(3)解:如图4,
四边形M′BCN′是矩形,
根据矩形的性质和P为BC边中点,得到△M′BP≌△N′CP,
得PM′=PN′成立.即“四边形MBCN是矩形,则PM=PN成立”.
25.(14分)(2010•沈阳)如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.
【解答】解:(1)由抛物线y=ax2+c经过点E(0,16),F(16,0)得:
解得,
∴.
(2)①过点P做PG⊥x轴于点G,
∵PO=PF,
∴OG=FG,
∵F(16,0),
∴OF=16,
∴OG=×OF=×16=8,
即P点的横坐标为8,
∵P点在抛物线上,
∵m>0,
∴y=,
即P点的纵坐标为12,
∴P(8,12),
∵P点的纵坐标为12,正方形ABCD边长是16,
∴Q点的纵坐标为﹣4,
∵Q点在抛物线上,
∴,
∴,
∵m>0,
∴x2=﹣8(舍)
∴,
∴.
②8﹣16<m<8.
③不存在.
理由:当n=7时,则P点的纵坐标为7,
∵P点在抛物线上,
∴,
∴x1=12,x2=﹣12,
∵m>0
∴x2=﹣12(舍去)
∴x=12
∴P点坐标为(12,7)
∵P为AB中点,
∴,
∴点A的坐标是(4,7),
∴m=4,
又∵正方形ABCD边长是16,
∴点B的坐标是(20,7),点C的坐标是(20,﹣9),
∴点Q的纵坐标为﹣9,
∵Q点在抛物线上,
∴,
∴x1=20,x2=﹣20,
∵m>0,
∴x2=﹣20(舍去)
∴x=20,
∴Q点坐标(20,﹣9),
∴点Q与点C重合,这与已知点Q不与点C重合矛盾,
∴当n=7时,不存在这样的m值使P为AB的边的中点.
参与本试卷答题和审题的老师有:MMCH;lanchong;蓝月梦;HLing;疯跑的蜗牛;Liuzhx;ZJX;算术;Linaliu;py168;xiawei;ln_86;张其铎;bjy;张超。;zhxl;zhjh;lbz(排名不分先后)
菁优网
2017年3月25日