- 1000.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第40章 操作探究
一、选择题
1. (2011广东广州市,8,3分)如图1所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )
C
D
B(A)
A
B
A
B
C
D
图1
A. B. C. D.
【答案】D
2. (2011安徽芜湖,9,4分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为cm的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).
A. B. C. D.
【答案】D
二、填空题
三、解答题
1. (2011江西南昌,25,10分)某数学兴趣小组开展了一次活动,过程如下:
设∠BAC=(0°<<90°).现把小棒依次摆放在两射线AB,AC之间,并使小棒两端分别落在两射线上.
活动一:
如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A1A2为第1根小棒.
数学思考:
(1)小棒能无限摆下去吗?答: .(填“能”或“不能”)
(2)设AA1=A1A2=A2A3=1.
①= 度;
②若记小棒A2n-1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,),求此时a2,a3的值,并直接写出an(用含n的式子表示).
图甲
活动二:
如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2= AA1.
数学思考:
(3)若已经向右摆放了3根小棒,则= ,= ,= ;(用含的式子表示)
(4)若只能摆放4根小棒,求的范围.
图乙
【答案】解:(1)能
(2)①22.5°
②方法一:
∵AA1=A1A2=A2A3=1, A1A2⊥A2A3,∴A1A3=,AA3=1+.
又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,
∴AA3=A3A4,AA5=A5A6,∴a2= A3A4=AA3=1+,a3=AA3+A3A5=a2+A3A5.∵A3A5=a2,
∴a3=A5A6=AA5=a2+a2=(+1)2.
方法二:
∵AA1=A1A2=A2A3=1, A1A2⊥A2A3,∴A1A3=,AA3=1+.
又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,
∴a2=A3A4=AA3=1+,又∵∠A2A3A4=∠A4A5A6=90°,∠A2A4A3=∠A4A6A5,∴△A2A3A4∽△A4A5A6,
∴,∴a3==(+1)2.
an=(+1)n-1.
(3)
(4)由题意得,∴15°<≤18°.
2. (2011福建福州,21,12分)已知,矩形中,,,的垂直平分线分别交、于点、,垂足为.
(1)如图10-1,连接、.求证四边形为菱形,并求的长;
(2)如图10-2,动点、分别从、两点同时出发,沿和各边匀速运动一周.即点自→→→停止,点自→→→停止.在运动过程中,
①已知点的速度为每秒5,点的速度为每秒4,运动时间为秒,当、、
、四点为顶点的四边形是平行四边形时,求的值.
②若点、的运动路程分别为、(单位:,),已知、、、四点为顶点的四边形是平行四边形,求与满足的数量关系式.
图10-1
图10-2
备用图
【答案】(1)证明:①∵四边形是矩形
∴∥
∴,
∵垂直平分,垂足为
∴
∴≌
∴
∴四边形为平行四边形
又∵
∴四边形为菱形
②设菱形的边长,则
在中,
由勾股定理得,解得
∴
(2)①显然当点在上时,点在上,此时、、、四点不可能构成平行四边形;同理点在上时,点在或上,也不能构成平行四边形.
因此只有当点在上、点在上时,才能构成平行四边形
∴以、、、四点为顶点的四边形是平行四边形时,
∵点的速度为每秒5,点的速度为每秒4,运动时间为秒
∴,
∴,解得
∴以、、、四点为顶点的四边形是平行四边形时,秒.
②由题意得,以、、、四点为顶点的四边形是平行四边形时,点、在互相平行的对应边上.
分三种情况:
i)如图1,当点在上、点在上时,,即,得
ii)如图2,当点在上、点在上时,, 即,得
iii)如图3,当点在上、点在上时,,即,得
综上所述,与满足的数量关系式是
图1
图2
图3
3. (2011浙江衢州,23,10分)是一张等腰直角三角形纸板,.
要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.
(第23题)
(第23题图1)
图1中甲种剪法称为第1次剪取,记所得的正方形面积为;按照甲种剪法,在余下的中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为(如图2),则 ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为(如图3);继续操作下去…则第10次剪取时, .
求第10次剪取后,余下的所有小三角形的面积和.
【答案】(1)解法1:如图甲,由题意得.如图乙,设,则由题意,得
又
甲种剪法所得的正方形的面积更大
说明:图甲可另解为:由题意得点D、E、F分别为的中点,
解法2:如图甲,由题意得
如图乙,设
甲种剪法所得的正方形的面积更大
(2)
(3)
(3)解法1:探索规律可知:‘
剩余三角形的面积和为:
解法2:由题意可知,
第一次剪取后剩余三角形面积和为
第二次剪取后剩余三角形面积和为
第三次剪取后剩余三角形面积和为
…
第十次剪取后剩余三角形面积和为
4. (2011浙江绍兴,23,12分)数学课上,李老师出示了如下框中的题目.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论:
(填“>”,“<”或“=”).
第25题图1
第25题图2
(2)特例启发,解答题目
解:题目中,与的大小关系是: (填“>”,“<”或“=”).理由如下:如图2,过点作,交于点.
(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形中,点在直线上,点在直线上,且.若的边长为1,,求的长(请你直接写出结果).
【答案】(1)= .
(2)=.
方法一:如图,等边三角形中,
是等边三角形,
又
.
方法二:在等边三角形中,
而由是正三角形可得
(3)1或3.
www.12999.com