• 309.00 KB
  • 2021-05-10 发布

八年级下数学平行四边形中考真题培优精选

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
八年级下数学平行四边形中考真题培优精选 ‎1、如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是 .‎ ‎2、如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=   度.‎ ‎3、如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有□ADCE中,DE最小的值是(  )‎ A.2 B.3 C.4 D.5‎ ‎4、如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,‎ 小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时 反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞 的次数为 ▲ ,小球P所经过的路程为 ▲ .‎ ‎5、如图,菱形ABCD中,AB=4,,,垂足分别为E,F,连接EF,则的△AEF的面积是 .‎ ‎ ‎ ‎6、矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E,F,点Q关于直线BC,CD的对称点分别是G,H。若由点E,F,G,H构成的四边形恰好为菱形,则PQ的长为__________‎ ‎7、如图,在ABCD中,AD=2AB,CE平分∠BCD交AD边于点E, 且AE=3,则AB的长为( ).‎ ‎(A)4 (B)3 (C) (D)2‎ ‎8、已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是(  )‎ ‎  A. 当AC=BD时,四边形ABCD是矩形B. 当AB=AD,CB=CD时,四边形ABCD是菱形 ‎  C. 当AB=AD=BC时,四边形ABCD是菱形D. 当AC=BD,AD=AB时,四边形ABCD是正方形 ‎9、如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.‎ 其中正确的是 ‎ ‎ ‎ ‎10、如图,在矩形ABCD中,AB的长度为a,BC的长度为b,其中b<a<b.将此矩形纸片按下列顺序折叠,则C′D′的长度为   (用含a、b的代数式表示).‎ ‎11、一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上。木工师傅想到了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm)后,从点N沿折线NF-FM(NF∥BC,FM∥AB)切割,如图1所示。图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠、无缝隙、不计损耗),则CN,AM的长分别是__________‎ ‎12、如图,矩形ABCD中,AB=6。第1次平移矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1;第2次平移矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2;…;第次平移矩形An-1Bn-1Cn-1Dn-1沿An-1Bn-1‎ 的方向向右平移5个单位,得到矩形AnBnCnDn(≥2)。‎ ‎(1)求AB1和AB2的长;‎ ‎(2)若ABn的长为56,求。‎ ‎13.如图将矩形ABCD绕点A顺时针旋转到AB’C’D’的位置,旋转角α(0°<α<90°).若 ‎∠1=110°,则∠α= °.‎ ‎14、如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2cm,∠A=120°,则EF= cm .‎ ‎15、如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为 ‎ A. B.C. D.2‎ ‎16、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5 °,EF⊥AB,垂足为F,则EF的长为( ) ‎ A. 1 B. ‎ C. 4-2 D.3-4‎ ‎17、如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:‎ ‎①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD 其中正确结论的为   (请将所有正确的序号都填上).‎ ‎18、对正方形ABCD进行分割,如图1,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”。若△GOM的面积为1,则“飞机”的面积为 。‎ ‎19、在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.‎ (1) 求证:四边形BFDE为平行四边形;‎ (2) 若四边形BFDE为菱形,且AB=2,求BC的长. ‎ ‎20、如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.‎ 图8‎ ‎21、在△中,, ,点为边的中点,交于点,‎ 交的延长线于点.‎ ‎(1)求证:;‎ ‎(2)联结,过点作的垂线交的 延长线于点,求证:.‎ ‎22、(2013长春)如图①, 在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD 于点E.若AE=10,求四边形ABCD的面积.‎ 应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为 .‎ ‎24、如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.‎ ‎(1)求证AE=BF;‎ ‎(2)正方形DEFG的面积是 16,求AC的长。‎ ‎ ‎ ‎25如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC.‎ ‎⑴求证:△BAD≌△AEC;‎ ‎⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.‎ ‎26、如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F 分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.‎ ‎27、在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB. 设=k.‎ ‎(1)证明:△BGF是等腰三角形;‎ ‎(2)当k为何值时,△BGF是等边三角形?‎ ‎(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.‎ G E A B C D F ‎(第25题图)‎ 利用上述结论,探究:当△BGF分别为锐角、直角、‎ 钝角三角形时,k的取值范围.‎ ‎28、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.‎ ‎(1)求证:△AMB≌△ENB;‎ ‎(2)①当M点在何处时,AM+CM的值最小;‎ ‎②当M点在何处时,AM+BM+CM的值最小,并说明理由;‎ ‎29、正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.‎ ‎(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)‎ ‎(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.‎ ‎30、如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.‎ ‎(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;‎ ‎(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;‎ ‎(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.‎