- 254.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
操作探究
一、选择题
1.(2014•德州,第12题3分)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2.
以上结论中,你认为正确的有( )个.
A.
1
B.
2
C.
3
D.
4
考点:
翻折变换(折叠问题)
分析:
先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;
根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;
点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;
过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.
解答:
解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,
∴FH∥CG,EH∥CF,
∴四边形CFHE是平行四边形,
由翻折的性质得,CF=FH,
∴四边形CFHE是菱形,故①正确;
∴∠BCH=∠ECH,
∴只有∠DCE=30°时EC平分∠DCH,故②错误;
点H与点A重合时,设BF=x,则AF=FC=8﹣x,
在Rt△ABF中,AB2+BF2=AF2,
即42+x2=(8﹣x)2,
解得x=3,
点G与点D重合时,CF=CD=4,
∴BF=4,
∴线段BF的取值范围为3≤BF≤4,故③正确;
过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,
由勾股定理得,EF===2,故④正确;
综上所述,结论正确的有①③④共3个.
故选C.
点评:
本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于③判断出BF最小和最大时的两种情况.
二.填空题
三.解答题
1. ( 2014•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.
(1)已知:DE∥AC,DF∥BC.
①判断
四边形DECF一定是什么形状?
②裁剪
当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;
(2)折叠
请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.
考点:
四边形综合题
分析:
(1)①根据有两组对边互相平行的四边形是平行四边形即可求得,②根据△ADF∽△ABC推出对应边的相似比,然后进行转换,即可得出h与x之间的函数关系式,根据平行四边形的面积公式,很容易得出面积S关于h的二次函数表达式,求出顶点坐标,就可得出面积s最大时h的值.
(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.
解答:
解:(1)①∵DE∥AC,DF∥BC,
∴四边形DECF是平行四边形.
②作AG⊥BC,交BC于G,交DF于H,
∵∠ACB=45°,AC=24cm
∴AG==12,
设DF=EC=x,平行四边形的高为h,
则AH=12h,
∵DF∥BC,
∴=,
∵BC=20cm,
即:=
∴x=×20,
∵S=xh=x•×20=20h﹣h2.
∴﹣=﹣=6,
∵AH=12,
∴AF=FC,
∴在AC中点处剪四边形DECF,能使它的面积最大.
(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.
理由:对角线互相垂直平分的四边形是菱形.
点评:
本题考查了相似三角形的判定及性质、菱形的判定、二次函数的最值.关键在于根据相似三角形及已知条件求出相关线段的表达式,求出二次函数表达式,即可求出结论.
2. ( 2014•福建泉州,第26题14分)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).
(1)求该反比例函数的关系式;
(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;
①求△A′BC的周长和sin∠BA′C的值;
②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.
考点:
反比例函数综合题;待定系数法求反比例函数解析式;勾股定理;矩形的判定与性质;垂径定理;直线与圆的位置关系;锐角三角函数的定义
专题:
压轴题;探究型.
分析:
(1)设反比例函数的关系式y=,然后把点P的坐标(2,1)代入即可.
(2)①先求出直线y=﹣x+3与x、y轴交点坐标,然后运用勾股定理即可求出△A′BC的周长;过点C作CD⊥AB,垂足为D,运用面积法可以求出CD长,从而求出sin∠BA′C的值.
②由于BC=2,sin∠BMC=,因此点M在以BC为弦,半径为m的⊙E上,因而点M应是⊙E与x轴的交点.然后对⊙E与x轴的位置关系进行讨论,只需运用矩形的判定与性质、勾股定理等知识就可求出满足要求的点M的坐标.
解答:
解:(1)设反比例函数的关系式y=.
∵点P(2,1)在反比例函数y=的图象上,
∴k=2×1=2.
∴反比例函数的关系式y=.
(2)①过点C作CD⊥AB,垂足为D,如图1所示.
当x=0时,y=0+3=3,
则点B的坐标为(0,3).OB=3.
当y=0时,0=﹣x+3,解得x=3,
则点A的坐标为(3,0),OA=3.
∵点A关于y轴的对称点为A′,
∴OA′=OA=3.
∵PC⊥y轴,点P(2,1),
∴OC=1,PC=2.
∴BC=2.
∵∠AOB=90°,OA′=OB=3,OC=1,
∴A′B=3,A′C=.
∴△A′BC的周长为3++2.
∵S△ABC=BC•A′O=A′B•CD,
∴BC•A′O=A′B•CD.
∴2×3=3×CD.
∴CD=.
∵CD⊥A′B,
∴sin∠BA′C===.
∴△A′BC的周长为3++2,sin∠BA′C的值为.
②当1<m<2时,
作经过点B、C且半径为m的⊙E,
连接CE并延长,交⊙E于点P,连接BP,
过点E作EG⊥OB,垂足为G,
过点E作EH⊥x轴,垂足为H,如图2①所示.
∵CP是⊙E的直径,
∴∠PBC=90°.
∴sin∠BPC===.
∵sin∠BMC=,
∴∠BMC=∠BPC.
∴点M在⊙E上.
∵点M在x轴上
∴点M是⊙E与x轴的交点.
∵EG⊥BC,
∴BG=GC=1.
∴OG=2.
∵∠EHO=∠GOH=∠OGE=90°,
∴四边形OGEH是矩形.
∴EH=OG=2,EG=OH.
∵1<m<2,
∴EH>EC.
∴⊙E与x轴相离.
∴x轴上不存在点M,使得sin∠BMC=.
②当m=2时,EH=EC.
∴⊙E与x轴相切.
Ⅰ.切点在x轴的正半轴上时,如图2②所示.
∴点M与点H重合.
∵EG⊥OG,GC=1,EC=m,
∴EG==.
∴OM=OH=EG=.
∴点M的坐标为(,0).
Ⅱ.切点在x轴的负半轴上时,
同理可得:点M的坐标为(﹣,0).
③当m>2时,EH<EC.
∴⊙E与x轴相交.
Ⅰ.交点在x轴的正半轴上时,
设交点为M、M′,连接EM,如图2③所示.
∵∠EHM=90°,EM=m,EH=2,
∴MH===.
∵EH⊥MM′,
∴MH=M′H.
∴M′H═.
∵∠EGC=90°,GC=1,EC=m,
∴EG===.
∴OH=EG=.
∴OM=OH﹣MH=﹣,
∴OM′=OH+HM′=+,
∴M(﹣,0)、M′(+,0).
Ⅱ.交点在x轴的负半轴上时,
同理可得:M(﹣+,0)、M′(﹣﹣,0).
综上所述:当1<m<2时,满足要求的点M不存在;
当m=2时,满足要求的点M的坐标为(,0)和(﹣,0);
当m>2时,满足要求的点M的坐标为(﹣,0)、(+,0)、(﹣+,0)、(﹣﹣,0).
点评:
本题考查了用待定系数法求反比例函数的关系式、勾股定理、三角函数的定义、矩形的判定与性质、直线与圆的位置关系、垂径定理等知识,考查了用面积法求三角形的高,考查了通过构造辅助圆解决问题,综合性比较强,难度系数比较大.由BC=2,sin∠BMC=联想到点M在以BC为弦,半径为m的⊙E上是解决本题的关键.
3.(2014•浙江宁波,第25题12分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.
我们有多少种剪法,图1是其中的一种方法:
定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.
(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;
(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.
考点:
相似形综合题;图形的剪拼
分析:
(1)45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.
(2)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再标准作图实验﹣﹣分别考虑
AD为等腰三角形的腰或者底边,兼顾AEC在同一直线上,易得2种三角形ABC.根据图形易得x的值.
(3)因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长.
解答:
解:(1)如图2作图,
(2)如图3 ①、②作△ABC.
①当AD=AE时,
∵2x+x=30+30,
∴x=20.
②当AD=DE时,
∵30+30+2x+x=180,
∴x=40.
(3)
如图4,CD、AE就是所求的三分线.
设∠B=a,则∠DCB=∠DCA=∠EAC=a,∠ADE=∠AED=2a,
此时△AEC∽△BDC,△ACD∽△ABC,
设AE=AD=x,BD=CD=y,
∵△AEC∽△BDC,
∴x:y=2:3,
∵△ACD∽△ABC,
∴2x=(x+y):2,
所以联立得方程组,
解得 ,
即三分线长分别是和.
点评:
本题考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道很锻炼学生能力的题目.