- 476.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年长沙中考数学之几何经典专题
1. 如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为( ) A.5 B.4 C.3 D.2
2. 如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为( )A.2 B.3 C. D.
3. 如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:
①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.
其中正确的个数是( )A.1 B.2 C.3 D.4
4. 已知点D与点A(0,6),B(0,﹣4),C(x,y)是平行四边形的四个顶点,其中x,y满足3x﹣4y+12=0,则CD长的最小值为( )
A.10 B.2 C. D.4
5. 如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是 .
6. 如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是 .
7. 如图,在△ABC中,∠BAC=90°,AB=6,AC=8,点P是BC边上任意一点(B、C除外)PE⊥AB于点E,PF⊥AC于点F,连接EF,则EF的最小值为 .
8. 如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为 .
9. 若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是 .
10. 如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣3,3).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)求∠EBP的度数;
(2)求点D运动路径的长;
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.
11. 如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.
(1)求∠EPF的大小;
(2)若AP=6,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.
12. 知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H
(1)如图1,猜想AH与AB有什么数量关系?并证明;
(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;
小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?
13. 如图1,BC是⊙O的直径,点A在⊙O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与⊙O相交于点H,与AB相交于点l,过点A作⊙O的切线AF,与DE相交于点F.
(1)求证:∠DAF=∠ABO;
(2)当AB=AD时,求证:BC=2AF;
(3)如图2,在(2)的条件下,延长FA,BC相交于点G,若tan∠DAF=,EH=2,求线段CG的长.
14. 如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.
(1)写出点A的坐标;
(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.
(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求的值.
参考答案与试题解析
一.选择题(共4小题)
1. 如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为( )
A.5 B.4 C.3 D.2
【解答】解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,
∵∠CED=90°,
∴四边形OMEN是矩形,
∴∠MON=90°,
∵∠COM+∠DOM=∠DON+∠DOM,
∴∠COM=∠DON,
∵四边形ABCD是正方形,
∴OC=OD,
在△COM和△DON中,
∴△COM≌△DON(AAS),
∴OM=ON,
∴四边形OMEN是正方形,
设正方形ABCD的边长为2a,
∵∠DCE=30°,∠CED=90°
∴DE=a,CE=a,
设DN=x,x+DE=CE﹣x,解得:x=,
∴NE=x+a=,
∵OE=NE,
∴=•,
∴a=1,
∴S正方形ABCD=4
故选B.
2. 如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为( )
A.2 B.3 C. D.
【解答】解:如图,延长FD到G,使DG=BE;
连接CG、EF;
∵四边形ABCD为正方形,
在△BCE与△DCG中,
,
∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,
∴∠GCF=45°,
在△GCF与△ECF中,
,
∴△GCF≌△ECF(SAS),
∴GF=EF,
∵CE=3,CB=6,
∴BE===3,
∴AE=3,
设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,
∴EF==,
∴(9﹣x)2=9+x2,
∴x=4,
即AF=4,
∴GF=5,
∴DF=2,
∴CF===2,
故选:A.
3. 如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:
①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.
其中正确的个数是( )
A.1 B.2 C.3 D.4
【解答】证明:∵四边形ABCD是正方形,E是AD边上的中点,
∴AE=DE,AB=CD,∠BAD=∠CDA=90°,
在△BAE和△CDE中
∵,
∴△BAE≌△CDE(SAS),
∴∠ABE=∠DCE,
∵四边形ABCD是正方形,
∴AD=DC,∠ADB=∠CDB=45°,
∵在△ADH和△CDH中,
,
∴△ADH≌△CDH(SAS),
∴∠HAD=∠HCD,
∵∠ABE=∠DCE
∴∠ABE=∠HAD,
∵∠BAD=∠BAH+∠DAH=90°,
∴∠ABE+∠BAH=90°,
∴∠AGB=180°﹣90°=90°,
∴AG⊥BE,故①正确;
∵tan∠ABE=tan∠EAG=,
∴AG=BG,GE=AG,
∴BG=4EG,故②正确;
∵AD∥BC,
∴S△BDE=S△CDE,
∴S△BDE﹣S△DEH=S△CDE﹣S△DEH,
即;S△BHE=S△CHD,故③正确;
∵△ADH≌△CDH,
∴∠AHD=∠CHD,
∴∠AHB=∠CHB,
∵∠BHC=∠DHE,
∴∠AHB=∠EHD,故④正确;
故选:D.
4. 已知点D与点A(0,6),B(0,﹣4),C(x,y)是平行四边形的四个顶点,其中x,y满足3x﹣4y+12=0,则CD长的最小值为( )
A.10 B.2 C. D.4
【解答】解:根据平行四边形的性质可知:对角线AB、CD互相平分,
∴CD过线段AB的中点M,即CM=DM,
∵A(0,6),B(0,﹣4),
∴M(0,1),
∵点到直线的距离垂线段最短,
∴过M作直线的垂线交直线于点C,此时CM最小,
直线3x﹣4y+12=0,令x=0得到y=3;令y=0得到x=﹣4,即F(﹣4,0),E(0,3),
∴OE=3,OF=4,EM=2,EF==5,
∵△EOF∽△ECM,
∴=,即=,
解得:CM=,
则CD的最小值为.
故选C.
5. 如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是 5﹣5 .
【解答】解:如图所示:过点A作AE⊥BD于点E,
当点A,O,E在一条直线上,此时AO最短,
∵平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,
∴AB=AD=CD=BC=10,∠BAD=∠BCD=60°,
∴△ABD是等边三角形,
∴AE过点O,E为BD中点,则此时EO=5,
故AO的最小值为:AO=AE﹣EO=ABsin60°﹣×BD=5﹣5.
故答案为:5﹣5.
6. 如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是 ≤AM<6 .
【解答】解:连接AP,
∵PE⊥AB,PF⊥AC,
∴∠AEP=∠AFP=90°,
∵∠BAC=90°,
∴四边形AEPF是矩形,
∴AP=EF,
∵∠BAC=90°,M为EF中点,
∴AM=EF=AP,
∵在Rt△ABC中,∠BAC=90°,AB=5,AC=12,
∴BC==13,
当AP⊥BC时,AP值最小,
此时S△BAC=×5×12=×13×AP,
∴AP=,
即AP的范围是AP≥,
∴2AM≥,
∴AM的范围是AM≥,
∵AP<AC,
即AP<12,
∴AM<6,
∴≤AM<6.
故答案为:≤AM<6.
7. 如图,在△ABC中,∠BAC=90°,AB=6,AC=8,点P是BC边上任意一点(B、C除外)PE⊥AB于点E,PF⊥AC于点F,连接EF,则EF的最小值为 4.8 .
【解答】解:连接AP,如图所示:
∵∠BAC=90°,AB=6,AC=8,
∴BC==10,
∵PE⊥AB于点E,PF⊥AC,
∴∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF=AP,
当AP⊥BC时,AP最小,
此时∵BC•AP=AB•AC,
∴AP===4.8,
∴EF的最小值为4.8;
故答案为:4.8.
8. 如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为 10 .
【解答】解:过点O作OM⊥AE于点M,作ON⊥DE,交ED的延长线于点N,
∵∠AED=90°,
∴四边形EMON是矩形,
∵正方形ABCD的对角线交于点O,
∴∠AOD=90°,OA=OD,
∴∠AOD+∠AED=180°,
∴点A,O,D,E共圆,
∴=,
∴∠AEO=∠DEO=∠AED=45°,
∴OM=ON,
∴四边形EMON是正方形,
∴EM=EN=ON,
∴△OEN是等腰直角三角形,
∵OE=8,
∴EN=8,
∴EM=EN=8,
在Rt△AOM和Rt△DON中,
,
∴Rt△AOM≌Rt△DON(HL),
∴AM=DN=EN﹣ED=8﹣6=2,
∴AE=AM+EM=2+8=10.
故答案为:10.
9. 若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是 对角线互相垂直 .
【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.
证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,
根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;
∵四边形EFGH是矩形,即EF⊥FG,
∴AC⊥BD,
故答案为:对角线互相垂直.
三.解答题(共5小题)
10. 如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣3,3).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)求∠EBP的度数;
(2)求点D运动路径的长;
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.
【解答】解:(1)如图,由题可得:AP=OQ=1×t=t(秒)
∴AO=PQ
∵四边形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°﹣∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,
∴△BAP≌△PQD(AAS).
∴BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
(2)∵△BAP≌△PQD,
∴DQ=AP,
∵AP=t,
∴DQ=t.
∴点D运动路径的长为t;
(3)∵∠EBP=45°
∴由图1可以得到EP=CE+AP,
∴OP+PE+OE=OP+AP+CE+OE
=AO+CO
=3+3
=6.
∴△POE周长是定值,该定值为6.
11.(2015•盐城)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.
(1)求∠EPF的大小;
(2)若AP=6,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.
【解答】解:(1)如图1,过点P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=,
在△FPG中,sin∠FPG===,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,
∵四边形ABCD是菱形,
∴AD=AB,DC=BC,
在△ABC与△ADC中,
,
∴△ABC≌△ADC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,
,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,∴AM=AP•cos30°=3,同理AN=3,
∴AE+AF=(AM﹣EM)+(AN+NF)=6;
(3)如图3,当EF⊥AC,点P在EF的右侧时,AP有最大值,
当EF⊥AC,点P在EF的左侧时,AP有最小值,
设AC与EF交于点O,
∵PE=PF,
∴OF=EF=2,
∵∠FPA=60°,
∴OP=2,
∵∠BAD=60°,
∴∠FAO=30°,
∴AO=6,
∴AP=AO+PO=8,
同理AP′=AO﹣OP=4,
∴AP的最大值是8,最小值是4.
12. 已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H
(1)如图1,猜想AH与AB有什么数量关系?并证明;
(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;
小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?
【解答】(1)答:AB=AH,
证明:延长CB至E使BE=DN,连接AE,
∵四边形ABCD是正方形,
∴∠ABC=∠D=90°,
∴∠ABE=180°﹣∠ABC=90°
又∵AB=AD,
∵在△ABE和△ADN中,
,
∴△ABE≌△ADN(SAS),
∴∠1=∠2,AE=AN,
∵∠BAD=90°,∠MAN=45°,
∴∠2+∠3=90°﹣∠MAN=45°,
∴∠1+∠3=45°,
即∠EAM=45°,
∵在△EAM和△NAM中,
,
∴△EAM≌△NAM(SAS),
又∵EM和NM是对应边,
∴AB=AH(全等三角形对应边上的高相等);
(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,
∵AD是△ABC的高,
∴∠ADB=∠ADC=90°
∴∠E=∠F=90°,
又∵∠BAC=45°
∴∠EAF=90°
延长EB、FC交于点G,则四边形AEGF是矩形,
又∵AE=AD=AF
∴四边形AEGF是正方形,
由(1)、(2)知:EB=DB=2,FC=DC=3,
设AD=x,则EG=AE=AD=FG=x,
∴BG=x﹣2;CG=x﹣3;BC=2+3=5,
在Rt△BGC中,(x﹣2)2+(x﹣3)2=52
解得x1=6,x2=﹣1,
故AD的长为6.
13. 如图1,BC是⊙O的直径,点A在⊙O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与⊙O相交于点H,与AB相交于点l,过点A作⊙O的切线AF,与DE相交于点F.
(1)求证:∠DAF=∠ABO;
(2)当AB=AD时,求证:BC=2AF;
(3)如图2,在(2)的条件下,延长FA,BC相交于点G,若tan∠DAF=,EH=2,求线段CG的长.
【解答】解:(1)连接AO,如图1.
∵AF与⊙O相切于点A,
∴OA⊥AF,即∠FAO=90°.
∵BC是⊙O的直径,
∴∠BAC=90°,
∴∠DAB=90°,
∴∠FAO=∠DAB=90°,
∴∠DAF=∠BAO.
∵OA=OB,
∴∠OAB=∠OBA,
∴∠DAF=∠ABO;
(2)∵DE⊥BC,∴∠DEB=90°,
∴∠DTB=90°+∠ABO.
∵∠DTB=90°+∠D,
∴∠D=∠ABO.
在△AFD和△AOB中,
,
∴△AFD≌△AOB,
∴AF=AO,
∴BC=2OA=2AF;
(3)过点A作AN⊥BC于N,连接OH,OA,如图2.
∵∠D=∠B=∠BAO=∠DAF,tan∠DAF=,
∴tanB==,tanD==,
∴BE=2IE,DE=2EC.
又∵∠DIA+∠D=∠DAF+∠FAI=90°,
∴∠FIA=∠FAI,
∴FI=FA,
∴DI=2AF=BC,
∴DE﹣IE=BE+EC,
∴2EC﹣IE=2IE+EC,
∴EC=3IE=BE.
设BE=2x,则有EC=3x,BC=5x,HO=BO=,EO=.
在Rt△HEO中,根据勾股定理可得
()2+(2)2=()2,
解得x=2(舍负).∵AN⊥BC,∠BAC=90°,
∴∠NAC=∠ABC,∴tan∠NAC==,tan∠ABC==,∴BN=2AN=4NC,∴BC=5NC=10,
∴NC=2,ON=5﹣2=3.∵∠AON=∠GOA,∠ANO=∠OAG=90°,
∴△AON∽△GOA,∴=,∴=,∴OG=,∴CG=OG﹣OC=.
14.如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.
(1)写出点A的坐标;
(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.
(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求的值.
【解答】解(1)令y=0,得:﹣x+4=0,解得x=4,
即点A的坐标为(4,0);
(2)存在.
理由:第一种情况,如下图一所示:
∵∠OBA=∠BAP,∴它们是对应角,
∴BQ=PA,
将x=0代入y=﹣x+4得:y=4,
∴OB=4,
由(1)可知OA=4,
在Rt△BOA中,由勾股定理得:AB==4.
∵△BOQ≌△AQP.
∴QA=OB=4,BQ=PA.
∵BQ=AB﹣AQ=4﹣4,
∴PA=4﹣4.
∴点P的坐标为(4,4﹣4);
第二种情况,如下图二所示:
∵△OQB≌△APQ,
∴AQ=BO=4,AB=,BQ=AP,
∴BQ=AB+AQ=,
∴AP=4,
∴点P的坐标为:(4,﹣4);
由上可得,点P的坐标为:(4,)或(4,).
(3)如图所示:
令PA=a,MA=b,△OAP外接圆的圆心为O1,△OAM的外接圆的圆心为O2,
∴OP2=OA2+PA2=42+a2=16+a2,OM2=OA2+MA2=42+b2=16+b2,
在Rt△POM中,PM2=OP2+OM2=a2+16+b2+16,
又∵PM2=(PA+AM)2=(a+b)2=a2+2ab+b2,∴ab=16,
∵O1A2=O1Q2+QA2=()2+()2=a2+4,O2A2=O2N2+NA2=()2+()2=b2+4,
∴S1=π×O1A2=(a2+4)π,S2=π×O2A2=(b2+4)π,
∴===×=.