- 857.83 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
【中考12年】浙江省台州市2001-2012年中考数学试题分类解析 专题7 统计与概率
一、 选择题
1. (2001年浙江舟山、嘉兴、台州、丽水4分)某校共有10个班级,小明所在的班级有49名学生.现在要从每个班级中任意抽1名学生去参加“八一”军民联欢晚会,小明被抽中的概率是【 】
A. B. C. D.
2. (2007年浙江台州4分)抛掷一枚硬币,正面向上的概率为【 】
A.1 B. C. D.
3. (2007年浙江台州4分)数据10,10,10,11,12,12,15,15的众数是【 】
A.10 B.11 C.12 D.15
4. (2008年浙江台州4分)一组数据9.5,9,8.5,8,7.5的极差是【 】
A.0.5 B.8.5 C.2.5 D.2
5. (2009年浙江台州4分)数据1,2,2,3,5的众数是【 】
A.1 B.2 C.3 D.5
6. (2009年浙江台州4分)盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任
意拿出一支笔芯,则拿出黑色笔芯的概率是【 】
A. B. C. D.
7. (2010年浙江台州4分)下列说法中正确的是【 】
A.“打开电视,正在播放《新闻联播》”是必然事件;
B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖;
C.数据1,1,2,2,3的众数是3;
D.想了解台州市城镇居民人均年收入水平,宜采用抽样调查.
8. (2011年浙江台州4分)要反映台州市某一周每天的最高气温的变化趋势,宜采用【 】
A.条形统计图 B.扇形统计图
C.折线统计图 D.频数分布统计图
9. (2012年浙江台州4分)为了解某公司员工的年工资情况,小王随机调查了10位员工,其年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20,下列统计量中,能合理反映该公司年工资中等水平的是【 】
A.方差 B.众数 C.中位数 D.平均数
二、填空题
1. (2002年浙江台州5分)2002年台州市初中毕业、升学考试各学科及满分值情况如下表:
科目
语文
数学
英语
社会政治
自然科学
体育
满分值
150
150
120
100
200
30
若把2002年台州市初中毕业、升学考试各学科满分值比例绘成圆形统计图,则数学科所在的扇形的圆心角是 ▲ 度。
2. (2003年浙江台州5分)如图,转盘的每个小扇形的圆心角都相等,那么转盘停止转动时,指针指向
阴影部分的概率是 ▲ 。
3. (2005年浙江台州5分)如图,在这三张扑克牌中任意抽取一张,抽到“红桃7”的概率是 ▲ .
4. (2007年浙江台州5分)两个装有乒乓球的盒子,其中一个装有2个白球1
个黄球,另一个装有1个白球2个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为
▲ .
5. (2008年浙江台州5分)台州市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄是16岁的概率是 ▲ .
6. (2009年浙江台州5分)随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:,则小麦长势比较整齐的试验田是 ▲ (填“甲”或“乙”).
7. (2010年浙江台州5分)如图是甲、乙两射击运动员的10次射击训练成绩(环数)的折线统计图,观察
图形,甲、乙这10次射击成绩的方差之间的大小关系是 ▲ .
8. (2011年浙江台州5分)袋子中装有2个黑球和3个白球,这些球的形状、大小、质地等完全相同.随
机地从袋子中摸出一个白球的概率是 ▲ .
9. (2012年浙江台州5分)不透明的袋子里装有3个红球5个白球,它们除颜色外其它都相同,从中随机摸出一个球,则摸到红球的概率是 ▲ .
三、解答题
1. (2003年浙江台州10分)下表是某中学对本校初二年级女生身高情况进行抽测后得到的部分资料 (身
高单位:㎝,测量时精确到1㎝),已知身高在170㎝以上(不含170㎝)的被测女生只有1人。
(1)求所有被测女生的人数;
(2)求身高在160㎝(含160㎝)以下的被测女生人数;
(3)估算全体被测女生的平均身高。
组 别
频率
145.5~150.5
0.04
150.5~155.5
0.24
155.5~160.5
0.36
160.5~165.5
0.30
165.5~170.5
0.04
170.5~175.5
0.02
2. (2004年浙江温州、台州10分)
某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以
上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动
进行中的一组统计数据:
(1) 计算并完成表格:
(2) 请估计,当n很大时,频率将会接近多少?
(3) 假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4) 在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)
转动转盘的次数n
100
150
200
500
800
1000
落在“铅笔”的次数m
68
111
136
345
564
701
落在“铅笔”的频率
3. (2005年浙江台州8分)现有7名同学测得某大厦的高度如下:(单位:)
29.8 30.0 30.0 30.0 30.2 44.0 30.0
(1) 在这组数据中,中位数是 , 众数是 ,平均数是 ;
(2) 凭经验,你觉得此大厦大概有多高?请简要说明理由.
4. (2006年浙江台州8分)学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计. 图1和图2是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数;
(2)求该班共有多少名学生;
(3)在图1中,将表示“乘车”的部分补充完整.
5. (2007年浙江台州12分)台州某校七(1)班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况、八年级300名同学零花钱的最主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.
九年级同学完成家庭作业时间情况统计表
时间
1小时左右
1.5小时左右
2小时左右
2.5小时左右
人数
50
80
120
50
根据以上信息,请回答下列问题:
(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?
(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;
(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时(结果保留一位小数)?
6. (2008年浙江台州12分)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A,B,C,D,E五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.
学生帮父母做家务活动时间频数分布表
等级
帮助父母做家务时间
(小时)
频数
A
2
B
10
C
a
D
b
E
3
(1)求a,b的值;
(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;
(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.
7. (2009年浙江台州12分)台州素有“七山一水两分田”之说,据此画成统计图1.图2是台州市2004~
2008年的人口统计图(单位:万人).
(1)请你计算扇形统计图中表示“田”的扇形圆心角的度数;
(2)请你指出台州市2004~2008年的人口变化趋势,并据此推断台州市2004~2008年人均耕地面积是
不断增加还是不断减少?(人均耕地面积=耕地总面积÷人口)
(3)结合统计图和资料的信息,计算台州市2008年耕地总面积约是多少亩?(结果用科学记数法表示)
8. (2010年浙江台州10分)果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块
用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据
每棵树产量把杨梅树划分成A,B,C,D,E五个等级(甲、乙的等级划分标准相同,每组数据包括左端
点不包括右端点).画出统计图如下:
(1)补齐直方图,求a的值及相应扇形的圆心角度数;
(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果;
(3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B的概率.
【答案】解:(1)画直方图:
9. (2011年浙江台州10分)(12分)2011年5月19日,中国首个旅游日正式启动.某校组织了八年级800
名学生参加的旅游地理知识竞赛,李老师为了了解学生对旅游地理知识的掌握情况,从中随机抽取了部分学生的成绩作为样本,把成绩按优秀、良好、及格和不及格4个级别进行统计,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请根据以上提供的信息,解答下列问题:
(1)求被抽取部分学生的人数;
(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;
(3)请估计八年级800名学生中达到良好和优秀的总人数.
10. (2012年浙江台州10分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?