- 5.93 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学压轴题100题精选上
中考数学压轴题100题精选(1-10题)
【001】如图,已知抛物线(a≠0)经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结.
(1)求该抛物线的解析式;
(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?
(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.
x
y
M
C
D
P
Q
O
A
B
【002】A
C
B
P
Q
E
D
图16
如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA
以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t = 2时,AP = ,点Q到AC的距离是 ;
(2)在点P从C向A运动的过程中,求△APQ的面积S与
t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成
为直角梯形?若能,求t的值.若不能,请说明理由;
(4)当DE经过点C 时,请直接写出t的值.
【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD
向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?
请直接写出相应的t值。
【004】如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.
(1)求的面积;
(2)求矩形的边与的长;
(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,
设移动时间为秒,矩形与重叠部分的面积为,求关
的函数关系式,并写出相应的的取值范围.
A
D
B
E
O
C
F
x
y
y
(G)
(第26题)
【005】如图1,在等腰梯形中,,是的中点,过点作交于点.,.
(1)求点到的距离;
(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.
①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;
②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.
A
D
E
B
F
C
图4(备用)
A
D
E
B
F
C
图5(备用)
A
D
E
B
F
C
图1
图2
A
D
E
B
F
C
P
N
M
图3
A
D
E
B
F
C
P
N
M
(第25题)
【006】如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。
(1) 求证:BE=AD;
(2) 求证:AC是线段ED的垂直平分线;
(3) △DBC是等腰三角形吗?并说明理由。
【009】一次函数的图象分别与轴、轴交于点,与反比例函数的图象相交于点.过点分别作轴,轴,垂足分别为;过点分别作轴,轴,垂足分别为与交于点,连接.
(1)若点在反比例函数的图象的同一分支上,如图1,试证明:
①;
②.
(2)若点分别在反比例函数的图象的不同分支上,如图2,则与还相等吗?试证明你的结论.
O
C
F
M
D
E
N
K
y
x
(第25题图1)
O
C
D
K
F
E
N
y
x
M
(第25题图2)
【010】如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.
(1)求抛物线对应的函数表达式;
(2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;
(3)设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;
(4)当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论).
O
B
x
y
A
M
C
1
(第26题图)
中考数学压轴题100题精选(1-10题)答案
【001】解:(1)抛物线经过点,
1分
二次函数的解析式为: 3分
(2)为抛物线的顶点过作于,则,
4分
x
y
M
C
D
P
Q
O
A
B
N
E
H
当时,四边形是平行四边形
5分
当时,四边形是直角梯形
过作于,则
(如果没求出可由求)
6分
当时,四边形是等腰梯形
综上所述:当、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. 7分
(3)由(2)及已知,是等边三角形
则
过作于,则 8分
= 9分
当时,的面积最小值为 10分
此时
A
C
)
B
P
Q
D
图3
E
)
F
11分
【002】解:(1)1,;
(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴.
A
C
B
P
Q
E
D
图4
由△AQF∽△ABC,,
得.∴. ∴,
即.
(3)能.
A
C
B
P
Q
E
D
图5
A
C(E)
)
B
P
Q
D
图6
G
A
C(E)
)
B
P
Q
D
图7
G
①当DE∥QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ ∽△ABC,得,
即. 解得.
②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ =90°.
由△AQP ∽△ABC,得 ,
即. 解得.
(4)或.
【注:①点P由C向A运动,DE经过点C.
方法一、连接QC,作QG⊥BC于点G,如图6.
,.
由,得,解得.
方法二、由,得,进而可得
,得,∴.∴.
②点P由A向C运动,DE经过点C,如图7.
,】
【003】解.(1)点A的坐标为(4,8) …………………1分
将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx
8=16a+4b
得
0=64a+8b
解 得a=-,b=4
∴抛物线的解析式为:y=-x2+4x …………………3分
(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=
∴PE=AP=t.PB=8-t.
∴点E的坐标为(4+t,8-t).
∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. …………………5分
∴EG=-t2+8-(8-t) =-t2+t.
∵-<0,∴当t=4时,线段EG最长为2. …………………7分
②共有三个时刻. …………………8分
t1=, t2=,t3= . …………………11分
【004】(1)解:由得点坐标为
由得点坐标为∴(2分)
由解得∴点的坐标为(3分)
∴(4分)
(2)解:∵点在上且 ∴点坐标为(5分)又∵点在上且∴点坐标为(6分)
∴(7分)
(3)解法一:当时,如图1,矩形与重叠部分为五边形(时,为四边形).过作于,则
A
D
B
E
O
R
F
x
y
y
M
(图3)
G
C
A
D
B
E
O
C
F
x
y
y
G
(图1)
R
M
A
D
B
E
O
C
F
x
y
y
G
(图2)
R
M
∴即∴
∴
即(10分)
图1
A
D
E
B
F
C
G
【005】(1)如图1,过点作于点 1分
∵为的中点,
∴
在中,∴ 2分
∴
即点到的距离为 3分
(2)①当点在线段上运动时,的形状不发生改变.
∵∴
∵∴,
同理 4分
如图2,过点作于,∵
图2
A
D
E
B
F
C
P
N
M
G
H
∴
∴
∴
则
在中,
∴的周长= 6分
②当点在线段上运动时,的形状发生改变,但恒为等边三角形.
当时,如图3,作于,则
类似①,
∴ 7分
∵是等边三角形,∴
此时, 8分
图3
A
D
E
B
F
C
P
N
M
图4
A
D
E
B
F
C
P
M
N
图5
A
D
E
B
F(P)
C
M
N
G
G
R
G
当时,如图4,这时
此时,
当时,如图5,
则又
∴
因此点与重合,为直角三角形.
∴
此时,
综上所述,当或4或时,为等腰三角形.
【006】解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=,得AB=,
设A(a,0),B(b,0)AB=b-a==,解得p=,但p<0,所以p=。
所以解析式为:
(2)令y=0,解方程得,得,所以A(,0),B(2,0),在直角三角形AOC中可求得AC=,同样可求得BC=,显然AC2+BC2=AB2,得△ABC是直角三角形。AB为斜边,所以外接圆的直径为AB=,所以。
(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组得D(,9)
②
若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A(,0)代入得AD解析式为y=0.5x+0.25,解方程组得D() 综上,所以存在两点:(,9)或()。
【007】
【008】证明:(1)∵∠ABC=90°,BD⊥EC,
∴∠1与∠3互余,∠2与∠3互余,
∴∠1=∠2…………………………………………………1分
∵∠ABC=∠DAB=90°,AB=AC
∴△BAD≌△CBE…………………………………………2分
∴AD=BE……………………………………………………3分
(2)∵E是AB中点,
∴EB=EA由(1)AD=BE得:AE=AD……………………………5分
∵AD∥BC∴∠7=∠ACB=45°∵∠6=45°∴∠6=∠7
由等腰三角形的性质,得:EM=MD,AM⊥DE。
即,AC是线段ED的垂直平分线。……………………7分
(3)△DBC是等腰三角(CD=BD)……………………8分
理由如下:
由(2)得:CD=CE由(1)得:CE=BD∴CD=BD
∴△DBC是等腰三角形。……………………………10分
【009】O
C
F
M
D
E
N
K
y
x
图1
解:(1)①轴,轴,
四边形为矩形.
轴,轴,
四边形为矩形.
轴,轴,
四边形均为矩形. 1分
,
,
.
.
,
,
. 2分
②由(1)知.
.
. 4分
,
. 5分
.
. 6分
轴,
四边形是平行四边形.
. 7分
同理.
. 8分
(2)与仍然相等. 9分
,
O
C
D
K
F
E
N
y
x
M
图2
,
又,
. 10分
.
.
,
.
.
. 11分
轴,
四边形是平行四边形.
.
同理.
. 12分
【010】y
x
E
D
N
O
A
C
M
P
N
1
F
(第26题图)
解:(1)根据题意,得 2分
解得抛物线对应的函数表达式为. 3分
(2)存在.
在中,令,得.
令,得,.
,,.
又,顶点. 5分
容易求得直线的表达式是.
在中,令,得.
,. 6分
在中,令,得.
.
,四边形为平行四边形,此时. 8分
(3)是等腰直角三角形.
理由:在中,令,得,令,得.
直线与坐标轴的交点是,.
,. 9分
又点,.. 10分
由图知,. 11分
,且.是等腰直角三角形. 12分
(4)当点是直线上任意一点时,(3)中的结论成立. 14分
中考数学压轴题100题精选(11-20题)
【011】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
D
F
B
A
C
E
第24题图③
F
B
A
D
C
E
G
第24题图②
F
B
A
D
C
E
G
第24题图①
【012】如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.
(1)求抛物线的解析式;
(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.
(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.
O
x
y
N
C
D
E
F
B
M
A
【013】如图,抛物线经过三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标.
O
x
y
A
B
C
4
1
(第26题图)
【014】在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).
(1)求边在旋转过程中所扫过的面积;
(第26题)
O
A
B
C
M
N
(2)旋转过程中,当和平行时,求正方形
旋转的度数;
(3)设的周长为,在旋转正方形
的过程中,值是否有变化?请证明你的结论.
【015】如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6.
⑴求二次函数的解析式;
⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.
【016】如图9,已知正比例函数和反比例函数的图象都经过点.
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;
若不存在,请说明理由.
y
x
O
C
D
B
A
3
3
6
【017】如图,已知抛物线经过,两点,顶点为.
(1)求抛物线的解析式;
(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
y
x
B
A
O
D
(第26题)
【018】如图,抛物线经过、两点,与轴交于另一点
.
(1)求抛物线的解析式;
(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;
(3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.
y
x
O
A
B
C
【019】如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO
(1)试比较EO、EC的大小,并说明理由
(2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由
(3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式.
(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。
【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。
解答下列问题:
(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 。
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动。
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由。(画图不写作法)
(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值。
中考数学压轴题100题精选(11-20题)答案
【011】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴ CG= FD.………1分
同理,在Rt△DEF中,EG= FD.…………2分∴ CG=EG.…………………3分
(2)(1)中结论仍然成立,即EG=CG.…………………………4分
证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,
∴ △DAG≌△DCG.∴ AG=CG.………………………5分
在△DMG与△FNG中,∵ ∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴ △DMG≌△FNG.∴ MG=NG 在矩形AENM中,AM=EN. ……………6分
在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,
∴ △AMG≌△ENG.∴ AG=EG.∴ EG=CG. ……………………………8分
证法二:延长CG至M,使MG=CG,
连接MF,ME,EC, ……………………4分
在△DCG 与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,
∴△DCG ≌△FMG.∴MF=CD,∠FMG=∠DCG.
∴MF∥CD∥AB.………………………5分∴ 在Rt△MFE 与Rt△CBE中,
∵ MF=CB,EF=BE,∴△MFE ≌△CBE.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.∴ △MEC为直角三角形.∵ MG = CG,∴ EG= MC.………8分
(3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.……10分
【012】解:(1)圆心在坐标原点,圆的半径为1,
点的坐标分别为
抛物线与直线交于点,且分别与圆相切于点和点,
.点在抛物线上,将
的坐标代入,得: 解之,得:
抛物线的解析式为:. 4分
(2)
抛物线的对称轴为,
O
x
y
N
C
D
E
F
B
M
A
P
. 6分
连结,
,,
又,
,
. 8分
(3)点在抛物线上. 9分
设过点的直线为:,
将点的坐标代入,得:,
直线为:. 10分
过点作圆的切线与轴平行,点的纵坐标为,
将代入,得:.
点的坐标为,当时,,
所以,点在抛物线上. 12分
【013】解:(1)该抛物线过点,可设该抛物线的解析式为.
将,代入,
得解得
此抛物线的解析式为. (3分)
(2)存在. (4分)
如图,设点的横坐标为,
O
x
y
A
B
C
4
1
(第26题图)
D
P
M
E
则点的纵坐标为,
当时,
,.
又,
①当时,
,
即.
解得(舍去),. (6分)
②当时,,即.
解得,(均不合题意,舍去)
当时,. (7分)
类似地可求出当时,. (8分)
当时,.
综上所述,符合条件的点为或或. (9分)
(3)如图,设点的横坐标为,则点的纵坐标为.
过作轴的平行线交于.由题意可求得直线的解析式为. (10分)
点的坐标为.. (11分)
.
当时,面积最大.. (13分)
【014】(1)解:∵点第一次落在直线上时停止旋转,∴旋转了.
∴在旋转过程中所扫过的面积为.……………4分
(2)解:∵∥,∴,.
∴.∴.又∵,∴.
又∵,,∴.∴.∴.∴旋转过程中,当和平行时,正方形旋转的度数为.……………………………………………8分
(3)答:值无变化. 证明:延长交轴于点,则,
,∴.又∵,.∴.∴.
(第26题)
O
A
B
C
M
N
又∵,, ∴.
∴.∴,
∴.
∴在旋转正方形的过程中,值无变化. ……………12分
【015】⑴设二次函数的解析式为:y=a(x-h)2+k∵顶点C的横坐标为4,且过点(0,)
∴y=a(x-4)2+k ………………①
又∵对称轴为直线x=4,图象在x轴上截得的线段长为6 ∴A(1,0),B(7,0)
∴0=9a+k ………………②由①②解得a=,k=∴二次函数的解析式为:y=(x-4)2-
⑵∵点A、B关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD≥DB ∴当点P在线段DB上时PA+PD取得最小值 ∴DB与对称轴的交点即为所求点P
设直线x=4与x轴交于点M ∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO
∴△BPM∽△BDO∴ ∴∴点P的坐标为(4,)
⑶由⑴知点C(4,),又∵AM=3,∴在Rt△AMC中,cot∠ACM=,
∴∠ACM=60o,∵AC=BC,∴∠ACB=120o
①当点Q在x轴上方时,过Q作QN⊥x轴于N 如果AB=BQ,由△ABC∽△ABQ有
BQ=6,∠ABQ=120o,则∠QBN=60o ∴QN=3,BN=3,ON=10,此时点Q(10,),
如果AB=AQ,由对称性知Q(-2,)
②当点Q在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4,),
经检验,点(10,)与(-2,)都在抛物线上
综上所述,存在这样的点Q,使△QAB∽△ABC
点Q的坐标为(10,)或(-2,)或(4,).
【016】解:(1)设正比例函数的解析式为,
因为的图象过点,所以,解得.
这个正比例函数的解析式为. (1分)
设反比例函数的解析式为.因为的图象过点,所以
,解得.这个反比例函数的解析式为. (2分)
(2)因为点在的图象上,所以,则点. (3分)
设一次函数解析式为.因为的图象是由平移得到的,
所以,即.又因为的图象过点,所以
,解得,一次函数的解析式为. (4分)
(3)因为的图象交轴于点,所以的坐标为.
设二次函数的解析式为.
因为的图象过点、、和,
所以 (5分) 解得
这个二次函数的解析式为. (6分)
(4)交轴于点,点的坐标是,
y
x
O
C
D
B
A
3
3
6
E
如图所示,
.
假设存在点,使.
四边形的顶点只能在轴上方,,
.
,.在二次函数的图象上,
.解得或.
当时,点与点重合,这时不是四边形,故舍去,
点的坐标为. (8分)
【017】解:(1)已知抛物线经过,
解得
所求抛物线的解析式为. 2分
(2),,
可得旋转后点的坐标为 3分
当时,由得,
可知抛物线过点
将原抛物线沿轴向下平移1个单位后过点.
平移后的抛物线解析式为:. 5分
(3)点在上,可设点坐标为
将配方得,其对称轴为. 6分
y
x
C
B
A
O
N
D
B1
D1
图①
①当时,如图①,
此时
y
x
C
B
A
O
D
B1
D1
图②
N
点的坐标为. 8分
②当时,如图②
同理可得
此时
点的坐标为.
综上,点的坐标为或. 10分
【018】解:(1)抛物线经过,两点,
解得
抛物线的解析式为.
y
x
O
A
B
C
D
E
(2)点在抛物线上,,
即,或.
点在第一象限,点的坐标为.
由(1)知.
设点关于直线的对称点为点.
,,且,
,
点在轴上,且.
,.
即点关于直线对称的点的坐标为(0,1).
(3)方法一:作于,于.
y
x
O
A
B
C
D
E
P
F
由(1)有:,
.
,且.
,
.
,,,
.
设,则,,
.
点在抛物线上,
,
(舍去)或,.
y
x
O
A
B
C
D
P
Q
G
H
方法二:过点作的垂线交直线于点,过点作轴于.过点作于.
.
,
又,.
,,.
由(2)知,.
,直线的解析式为.
解方程组得
点的坐标为.
【019】(1)EO>EC,理由如下:
由折叠知,EO=EF,在Rt△EFC中,EF为斜边,∴EF>EC, 故EO>EC …2分
(2)m为定值
∵S四边形CFGH=CF2=EF2-EC2=EO2-EC2=(EO+EC)(EO―EC)=CO·(EO―EC)
S四边形CMNO=CM·CO=|CE―EO|·CO=(EO―EC) ·CO
∴ ……………………………………………………4分
(3)∵CO=1, ∴EF=EO=
∴cos∠FEC= ∴∠FEC=60°,
∴
∴△EFQ为等边三角形, …………………………………………5分
作QI⊥EO于I,EI=,IQ=
∴IO= ∴Q点坐标为 ……………………………………6分
∵抛物线y=mx2+bx+c过点C(0,1), Q ,m=1
∴可求得,c=1
∴抛物线解析式为 ……………………………………7分
(4)由(3),
当时,<AB
∴P点坐标为 …………………8分
∴BP=AO
方法1:若△PBK与△AEF相似,而△AEF≌△AEO,则分情况如下:
①时,∴K点坐标为或
②时, ∴K点坐标为或…………10分
故直线KP与y轴交点T的坐标为
…………………………………………12分
方法2:若△BPK与△AEF相似,由(3)得:∠BPK=30°或60°,过P作PR⊥y轴于R,则∠RTP=60°或30°
①当∠RTP=30°时,
②当∠RTP=60°时,
∴ ……………………………12分
【020】解:(1)①CF⊥BD,CF=BD
②成立,理由如下:∵∠FAD=∠BAC=90° ∴∠BAD=∠CAF
又 BA=CA ,AD=AF ∴△BAD≌△CAF∴CF=BD ∠ACF=∠ACB=45°
∴∠BCF=90° ∴CF⊥BD ……(1分)
(2)当∠ACB=45°时可得CF⊥BC,理由如下:
如图:过点A作AC的垂线与CB所在直线交于G
则∵∠ACB=45° ∴AG=AC ∠AGC=∠ACG=45°
∵AG=AC AD=AF ………(1分)
∴△GAD≌△CAF(SAS) ∴∠ACF=∠AGD=45°
∴∠GCF=∠GCA+∠ACF=90° ∴CF⊥BC …………(2分)
(3)如图:作AQBC于Q
∵∠ACB=45° AC=4 ∴CQ=AQ=4
∵∠PCD=∠ADP=90°∴∠ADQ+∠CDP=∠CDP+∠CPD=90°
∴△ADQ∽△DPC …(1分)
∴=
设CD为x(0<x<3)则DQ=CQ-CD=4-x则= …………(1分)
∴PC=(-x2+4x)=-(x-2)2+1≥1
当x=2时,PC最长,此时PC=1 ………(1分)
中考数学压轴题100题精选(21-30题)
【021】如图,点P是双曲线上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y= (0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1= ▲ (用含k1、k2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记,S2是否有最小值?若有,求出其最小值;若没有,请说明理由。
【022】一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?
(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
【023】如图,在梯形中,点是的中点,是等边三角形.
(1)求证:梯形是等腰梯形;
(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式;
(3)在(2)中:①当动点、运动到何处时,以点、和点、、、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当取最小值时,判断的形状,并说明理由.
A
D
C
B
P
M
Q
60°
【024】如图,已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、.
(1)求点的坐标(用表示);
(2)求抛物线的解析式;
(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结 并延长交于点,试证明:为定值.
【025】如图12,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与△AOB重叠部分的面积为S.试求S与的函数关系式并画出该函数的图象.
B
x
y
M
C
D
O
A
图12(1)
B
x
y
O
A
图12(2)
B
x
y
O
A
图12(3)
【026】如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH
(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个
单位的速度沿CB方向向右移动,直到点D与点B
重合时停止,设运动的时间为t秒,运动后的直角梯
形为DEFH′(如图12).
探究1:在运动中,四边形CDH′H能否为正方形?若能,
请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠
部分的面积为y,求y与t的函数关系.
【027】阅读材料:
如图12-1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图12-2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及;
图12-2
x
C
O
y
A
B
D
1
1
(3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
【028】如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。
(1) 求抛物线的解析式;
(2) 设抛物线顶点为D,求四边形AEDB的面积;
(3) △AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。
【029】已知二次函数。
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点。
(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式。
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。
【030】如图,已知射线DE与轴和轴分别交于点和点.动点从点出发,以1个单位长度/秒的速度沿轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为秒.
(1)请用含的代数式分别表示出点C与点P的坐标;
(2)以点C为圆心、个单位长度为半径的与轴交于A、B两点(点A在点B
的左侧),连接PA、PB.
O
x
y
E
P
D
A
B
M
C
①当与射线DE有公共点时,求的取值范围;
②当为等腰三角形时,求的值.
中考数学压轴题100题精选(21-30题)答案
【021】解:(1); … ………………………………3分
(2)①EF∥AB. ……………………………………4分
证明:如图,由题意可得A(–4,0),B(0,3),, .
∴PA=3,PE=,PB=4,PF=.
∴,
∴. ………………………… 6分
又∵∠APB=∠EPF.
∴△APB ∽△EPF,∴∠PAB=∠PEF.
∴EF∥AB. …………………………… 7分
②S2没有最小值,理由如下:
过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q.
由上知M(0,),N(,0),Q(,). ……………… 8分
而S△EFQ= S△PEF,∴S2=S△PEF-S△OEF=S△EFQ-S△OEF=S△EOM+S△FON+S矩形OMQN
==
=. ………………………… 10分
当时,S2的值随k2的增大而增大,而0<k2<12. …………… 11分
∴0<S2<24,s2没有最小值. …………………………… 12分
说明:1.证明AB∥EF时,还可利用以下三种方法.方法一:分别求出经过A、B两点和经过E、F两点的直线解析式,利用这两个解析式中x的系数相等来证明AB∥EF;方法二:利用=来证明AB∥EF;方法三:连接AF、BE,利用S△AEF=S△BFE得到点A、点B到直线EF的距离相等,再由A、B两点在直线EF同侧可得到AB∥EF.
2.求S2的值时,还可进行如下变形:
S2= S△PEF-S△OEF=S△PEF-(S四边形PEOF-S△PEF)=2 S△PEF-S四边形PEOF,再利用第(1)题中的结论.
【022】解:(1)设抛物线的解析式为:y=a(x-m+2)(x-m-2)=a(x-m)2-4a.……2分
∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4,
∴C(m,-2)代入得a=.∴解析式为:y=(x-m)2-2.………………………5分
(亦可求C点,设顶点式)
(2)∵m为小于零的常数,∴只需将抛物线向右平移-m个单位,再向上平移2个单位,可以使抛物线y=(x-m)2-2顶点在坐标原点.……………………………………7分
(3)由(1)得D(0,m2-2),设存在实数m,使得△BOD为等腰三角形.
∵△BOD为直角三角形,∴只能OD=OB.……………………………………………9分
∴m2-2=|m+2|,当m+2>0时,解得m=4或m=-2(舍).
当m+2<0时,解得m=0(舍)或m=-2(舍);
当m+2=0时,即m=-2时,B、O、D三点重合(不合题意,舍)
综上所述:存在实数m=4,使得△BOD为等腰三角形.……………………………12分
A
D
C
B
P
M
Q
60°
【023】(1)证明:∵是等边三角形
∴
∵是中点 ∴ ∵
∴
∴ ∴ ∴梯形是等腰梯形.
(2)解:在等边中,
∴
∴∴ ∴ 5分
∵ ∴ 6分
∴ ∴ 7分
(3)解:①当时,则有
则四边形和四边形均为平行四边形∴
当时,则有 ,
则四边形和四边形均为平行四边形 ∴
∴当或时,以P、M和A、B、C、 D
中的两个点为顶点的四边形是平行四边形.此时平行四边形有4个.
为直角三角形 ∵ ∴当取最小值时,
∴是的中点,而∴∴
【024】(1)由可知,,又△ABC为等腰直角三角形,
∴,,所以点A的坐标是().
(2)∵ ∴,则点的坐标是().
又抛物线顶点为,且过点、,所以可设抛物线的解析式为:,得:
解得 ∴抛物线的解析式为 ………7分
(3)过点作于点,过点作于点,设点的坐标是,则,.
∵ ∴∽ ∴ 即,得 ∵ ∴∽ ∴ 即,得 又∵
∴
即为定值8.
【025】解:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(00,-x+4>0);
则:MC=∣-x+4∣=-x+4,MD=∣x∣=x;
∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8
∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8;
(2)根据题意得:S四边形OCMD=MC·MD=(-x+4)· x=-x2+4x=-(x-2)2+4
∴四边形OCMD的面积是关于点M的横坐标x(0PA,∴只存在点Q1,使Q1A=Q1P.
如图2,过点Q1作Q1M⊥AP,垂足为点M,Q1M交AC于点F,则AM=.
由△AMF∽△AOD∽△CQ1F,得, ,
∴. ………………1分∴CQ1==.则,
∴ .……………………………1分
第二种情况:当点Q在BA上时,存在两点Q2,Q3,
分别使A P= A Q2,PA=PQ3.
①若AP=AQ2,如图3,CB+BQ2=10-4=6.
则,∴.……1分
②若PA=PQ3,如图4,过点P作PN⊥AB,垂足为N,
由△ANP∽△AEB,得.
∵AE= , ∴AN=.
∴AQ3=2AN=, ∴BC+BQ3=10-
则.∴.
………………………1分
综上所述,当t= 4秒,以所得的等腰三角形APQ沿底边翻折,翻折后得到菱形的k值为或或.
【032】解:(1)在△ABC中,∵,,.
∴,解得. 4分
(2)①若AC为斜边,则,即,无解.
②若AB为斜边,则,解得,满足.
③若BC为斜边,则,解得,满足.
C
A
B
N
M
(第24题-1)
D
∴或. 9分
(3)在△ABC中,作于D,
设,△ABC的面积为S,则.
①若点D在线段AB上,
则.
∴,即.
∴,即.
∴(). 11分
当时(满足),取最大值,从而S取最大值. 13分
②若点D在线段MA上,
C
B
A
D
M
N
(第24题-2)
则.
同理可得,
(),
易知此时.
综合①②得,△ABC的最大面积为. 14分
【033】第(2)题
x
y
B
C
O
D
A
M
N
N′
x
y
B
C
O
A
M
N
P1
P2
备用图
(1).……………4分
(2)由题意得点与点′关于轴对称,,
将′的坐标代入得,
(不合题意,舍去),.……………2分
,点到轴的距离为3.
, ,直线的解析式为,
它与轴的交点为点到轴的距离为.
.……………2分
(3)当点在轴的左侧时,若是平行四边形,则平行且等于,
把向上平移个单位得到,坐标为,代入抛物线的解析式,
得:
(不舍题意,舍去),,.……………2分
当点在轴的右侧时,若是平行四边形,则与互相平分,
.
与关于原点对称,,
将点坐标代入抛物线解析式得:,
(不合题意,舍去),,.……………2分
存在这样的点或,能使得以为顶点的四边形是平行四边形.
【034】解:(1)2. ……………2分
A
C
B
P
E
第(25)题
(2)证明:在上取点,使,
连结,再在上截取,连结.
,为正三角形,
=,
为正三角形,=,
=,
′,.
,
,为的费马点,
过的费马点,且=+.………2分
【035】解:(1)(1,0) 1分
点P运动速度每秒钟1个单位长度. 2分
(2) 过点作BF⊥y轴于点,⊥轴于点,则=8,.
∴.
在Rt△AFB中, 3分
过点作⊥轴于点,与的延长线交于点.
∵ ∴△ABF≌△BCH.
∴.
∴.
∴所求C点的坐标为(14,12). 4分
(3) 过点P作PM⊥y轴于点M,PN⊥轴于点N,
则△APM∽△ABF.
∴. .
∴. ∴.
设△OPQ的面积为(平方单位)
∴(0≤≤10) 5分
说明:未注明自变量的取值范围不扣分.
∵<0 ∴当时, △OPQ的面积最大. 6分
此时P的坐标为(,) . 7分
(4) 当 或时, OP与PQ相等. 9分
对一个加1分,不需写求解过程.
【036】解:(1)由已知,得,,
,
.. (1分)
设过点的抛物线的解析式为.将点的坐标代入,得.[来源:学&将和点的坐标分别代入,得 (2分)
解这个方程组,得[来源:学#科#网]故抛物线的解析式为. (3分)
(2)成立. (4分)
点在该抛物线上,且它的横坐标为,y
x
D
B
C
A
E
E
O
M
F
K
G
G
点的纵坐标为. (5分)
设的解析式为,
将点的坐标分别代入,得
解得
的解析式为.,. (7分)
过点作于点,则.,
.又,.
.[来..
(3)点在上,,,则设.
,,.
①若,则,
解得.,此时点与点重合..
②若,则,解得 ,,此时轴.
与该抛物线在第一象限内的交点的横坐标为1,点的纵坐标为..
③若,则,[来
解得,,此时,是等腰直角三角形.
过点作轴于点,则,设,
y
x
D
B
C
A
E
E
O
Q
P
H
G
G
(P)
(Q)
Q
(P)
.
.
解得(舍去)..(12分)
综上所述,存在三个满足条件的点,即或或.
【037】解:(1)设第一象限内的点B(m,n),则tan∠POB,得m=9n,又点B在函数 的图象上,得,所以m=3(-3舍去),点B为,
而AB∥x轴,所以点A(,),所以;
(2)由条件可知所求抛物线开口向下,设点A(a , a),B(,a),则AB=- a = ,
所以,解得 .
当a = -3时,点A(―3,―3),B(―,―3),因为顶点在y = x上,所以顶点为(-,-),所以可设二次函数为,点A代入,解得k= -,所以所求函数解析式为 .
同理,当a = 时,所求函数解析式为;
(3)设A(a , a),B(,a),由条件可知抛物线的对称轴为 .
设所求二次函数解析式为: .
点A(a , a)代入,解得,,所以点P到直线AB的距离为3或。
【038】解:(1)矩形(长方形);.
(2)①,,.
,即,,. 4分
同理,,即,
,.. 6分
②在和中,
[来源:学科网ZXXK]. 7分
.设,[来源:学科网]在中, ,解得. 8分
. 9分
(3)存在这样的点和点,使. 10分
Q
C
B
A
O
x
P
y
H
点的坐标是,. 12分
对于第(3)题,我们提供如下详细解答,对学生无此要求.
过点画于,连结,则,
,,
.设,,Q
C
B
A
O
x
P
y
H
,
① 如图1,当点P在点B左侧时,
,
在中,,[来源:学科网ZXXK]
解得,(不符实际,舍去).
,.
②如图2,当点P在点B右侧时,,.
在中,,解得.,
.综上可知,存在点,,使.
【039】(1) 将点A(-4,8)的坐标代入,解得. ……1分
将点B(2,n)的坐标代入,求得点B的坐标为(2,2),
则点B关于x轴对称点P的坐标为(2,-2). ……1分
(第24题(1))
4
x
2
2
A
8
-2
O
-2
-4
y
6
B
C
D
-4
4
Q
P
直线AP的解析式是. ……1分
令y=0,得.即所求点Q的坐标是(,0). ……1分
(2)① 解法1:CQ=︱-2-︱=, ……1分
故将抛物线向左平移个单位时,A′C+CB′最短,
此时抛物线的函数解析式为. ……1分
(第24题(2)①)
4
x
2
2
A′
8
-2
O
-2
-4
y
6
B′
C
D
-4
4
A′′
解法2:设将抛物线向左平移m个单位,则平移后A′,B′的坐标分别为A′(-4-m,8)和B′(2-m,2),点A′关于x轴对称点的坐标为A′′(-4-m,-8).
直线A′′B′的解析式为. 要使A′C+CB′最短,点C应在直线A′′B′上,将点C(-2,0)代入直线A′′B′的解析式,解得.
故将抛物线向左平移个单位时A′C+CB′最短,此时抛物线的函数解析式为. ……1分
(第24题(2)②)
4
x
2
2
A′
8
-2
O
-2
-4
y
6
B′
C
D
-4
4
A′′
B′′
② 左右平移抛物线,因为线段A′B′和CD的长是定值,所以要使四边形A′B′CD的周长最短,只要使A′D+CB′最短; ……1分
第一种情况:如果将抛物线向右平移,显然有A′D+CB′>AD+CB,因此不存在某个位置,使四边形A′B′CD的周长最短.……1分
第二种情况:设抛物线向左平移了b个单位,则点A′和点B′的坐标分别为A′(-4-b,8)和B′(2-b,2).
因为CD=2,因此将点B′向左平移2个单位得B′′(-b,2),
要使A′D+CB′最短,只要使A′D+DB′′最短. ……1分
点A′关于x轴对称点的坐标为A′′(-4-b,-8),直线A′′B′′的解析式为.要使A′D+DB′′最短,点D应在直线A′′B′′上,将点D(-4,0)代入直线A′′B′′的解析式,解得.故将抛物线向左平移时,存在某个位置,使四边形A′B′CD的周长最短,此时抛物线的函数解析式为.……1分
【040】(1)解 ①如图1,当在△ABC内时,重叠部分是平行四边形,由题意得:
解得x=……(2分)
②如图3,当在△ABC内时,重叠部分是平行四边形,由题意得:
N= 列式得()×=
解得x=……(2分)
综上所述,当△与△重叠部分面积 为平方厘米时,△移动的时间为或()秒。
图1
图2
图3
图1
(2) ①如图1,当0≤x≤时 ……(1分)
②如图2,当≤x≤时,如图,△DN, △,△是等腰直角三角形, N=,GF=MN=,
即…(3分)
③如图3,当≤x≤时,…(1分)
(3)①当0≤x≤时, ……(1分)
②当≤x≤时, ……(2分)
③当≤x≤时, ……(1分)
所以,△与△重叠部分面积的最大值为5。
中考数学压轴题100题精选(41-50题)
【041】
某公交公司的公共汽车和出租车每天从乌鲁木齐市出发往返于乌鲁木齐市和石河子市两地,出租车比公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程(单位:千米)与所用时间(单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达石河子市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早1小时.
(1)请在图中画出公共汽车距乌鲁木齐市的路程(千米)与所用时间(小时)的函数图象.
(2)求两车在途中相遇的次数(直接写出答案)
(3)求两车最后一次相遇时,距乌鲁木齐市的路程.
[来源:Zxxk.Com]y(千米)
x(小时)
150
100
50
1
1
0
2
3
4
5
6
7
8
【042】如图9,在矩形中,已知、两点的坐标分别为,为的中点.设点是平分线上的一个动点(不与点重合).
(1)试证明:无论点运动到何处,总与相等;
(2)当点运动到与点的距离最小时,试确定过三点的抛物线的解析式;
(3)设点是(2)中所确定抛物线的顶点,当点运动到何处时,的周长最小?求出此时点的坐标和的周长;
(4)设点是矩形的对称中心,是否存在点,使?若存在,请直接写出点的坐标.
y
O
x
P
D
B
图9
【043】已知函数为方程的两个根,点在函数的图象上.
(Ⅰ)若,求函数的解析式;
(Ⅱ)在(Ⅰ)的条件下,若函数与的图象的两个交点为,当
的面积为时,求的值;
(Ⅲ)若,当时,试确定三者之间的大小关系,并说明理由.
【044】如图9,已知抛物线y=x2–2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连结O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.
(1) 求直线l的函数解析式;
(2) 求点D的坐标;
(3) 抛物线上是否存在点Q,使得S△DQC= S△DPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.
图9
【045】如图,已知直线与轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)。
⑴求该抛物线的解析式;
⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。
⑶在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。
【046】如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.
(1)求的面积;
(2)求矩形的边与的长;
(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围.
A
D
B
E
O
C
F
x
y
y
(G)
[来源:学科
【047】如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕.当时,求的值.
方法指导:
为了求得的值,可先求、的长,不妨设:=2
类比归纳
在图(1)中,若则的值等于 ;若则的值等于 ;若(为整数),则的值等于 .(用含的式子表示)
联系拓广
图(2)
N
A
B
C
D
E
F
M
图(1)
A
B
C
D
E
F
M
N
如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于 .(用含的式子表示)
【048】如图11,抛物线与轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).
(1)求a的值及直线AC的函数关系式;
(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.
①求线段PM长度的最大值;
②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由。
【049】已知:抛物线的对称轴为与轴交于两点,与轴交于点其中、
(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得的周长最小.请求出点P的坐标.
(3)若点是线段上的一个动点(不与点O、点C重合).过点D作交轴于点连接、.设的长为,的面积为.求与之间的函数关系式.试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.
[来源:学科网]
A
C
x
y
B
O
【050】如图,在梯形ABCD中,,,,,点由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交于Q,连接PE.若设运动时间为(s)().解答下列问题:
(1)当为何值时,?
(2)设的面积为(cm2),求与之间的函数关系式;
(3)是否存在某一时刻,使?若存在,求出此时的值;若不存在,说明理由.
(4)连接,在上述运动过程中,五边形的面积是否发生变化?说明理由.
A
E
D
Q
P
B
F
C
中考数学压轴题100题精选(41-50题)答案
【041】(1)如图 (3分)
y(千米)
x(小时)
150
100
50
-1
1
0
2
3
4
5
6
7
8
A
C
B
D
E
(2)2次 (5分)
(3)如图,设直线的解析式为,
图象过,
.① (7分)
设直线的解析式为,
图象过,
.② (7分)
解由①、②组成的方程组得
最后一次相遇时距离乌鲁木齐市的距离为112.5千米. (12分)
【042】解:(1)∵点是的中点,∴,∴.
又∵是的角平分线,∴,
∴,∴. 3分
(2)过点作的平分线的垂线,垂足为,点即为所求.
y
O
x
D
B
P
E
F
M
易知点的坐标为(2,2),故,作,
∵是等腰直角三角形,∴,
∴点的坐标为(3,3).
∵抛物线经过原点,∴设抛物线的解析式为.
又∵抛物线经过点和点,∴有 解得
∴抛物线的解析式为. 7分
(3)由等腰直角三角形的对称性知D点关于的平分线的对称点即为点.
连接,它与的平分线的交点即为所求的点(因为,而两点之间线段最短),此时的周长最小.
∵抛物线的顶点的坐标,点的坐标,
设所在直线的解析式为,则有,解得.
∴所在直线的解析式为.
点满足,解得,故点的坐标为.
的周长即是.
(4)存在点,使.其坐标是或. 14分
【043】解(Ⅰ),
. 1分
将分别代入,得
,
解得.函数的解析式为. 3分
(Ⅱ)由已知,得,设的高为,
,即.
根据题意,,由,得.
当时,解得;
当时,解得.
的值为. 6分
(Ⅲ)由已知,得.
,,
,化简得.
,得, .
有.
又,,,
当时,;当时,;
当时,. 10分
【044】(1) 配方,得y=(x–2)2 –1,∴抛物线的对称轴为直线x=2,顶点为P
(2,–1) .
取x=0代入y=x2 –2x+1,得y=1,∴点A的坐标是(0,1).由抛物线的对称性知,点A(0,1)与点B关于直线x=2对称,∴点B的坐标是(4,1). 2分
设直线l的解析式为y=kx+b(k≠0),将B、P的坐标代入,有
解得∴直线l的解析式为y=x–3.3分
(2) 连结AD交O′C于点E,∵ 点D由点A沿O′C翻折后得到,∴ O′C垂直平分AD.[来源:Z。xx。k.Com]
由(1)知,点C的坐标为(0,–3),∴ 在Rt△AO′C中,O′A=2,AC=4,∴ O′C=2.
据面积关系,有 ×O′C×AE=×O′A×CA,∴ AE=,AD=2AE=.
作DF⊥AB于F,易证Rt△ADF∽Rt△CO′A,∴,
∴ AF=·AC=,DF=·O′A=,5分
又 ∵OA=1,∴点D的纵坐标为1–= –,
∴ 点D的坐标为(,–).
(3) 显然,O′P∥AC,且O′为AB的中点,
∴ 点P是线段BC的中点,∴ S△DPC= S△DPB .
故要使S△DQC= S△DPB,只需S△DQC=S△DPC .
过P作直线m与CD平行,则直线m上的任意一点与CD构成的三角形的面积都等于S△DPC ,故m与抛物线的交点即符合条件的Q点.
容易求得过点C(0,–3)、D(,–)的直线的解析式为y=x–3,
据直线m的作法,可以求得直线m的解析式为y=x–.[来源:学_科_网]
令x2–2x+1=x–,解得 x1=2,x2=,代入y=x–,得y1= –1,y2=,
因此,抛物线上存在两点Q1(2,–1)(即点P)和Q2(,),使得S△DQC= S△DPB.
【045】(1)将A(0,1)、B(1,0)坐标代入得解得
∴抛物线的解折式为…(2分)
(2)设点E的横坐标为m,则它的纵坐标为
即 E点的坐标(,)又∵点E在直线上[来源:Z§xx§k.Com]
∴ 解得(舍去),
∴E的坐标为(4,3)……(4分)
(Ⅰ)当A为直角顶点时
过A作AP1⊥DE交x轴于P1点,设P1(a,0) 易知D点坐标为(-2,0) 由Rt△AOD∽Rt△POA得
即,∴a= ∴P1(,0)……(5分)
(Ⅱ)同理,当E为直角顶点时,P2点坐标为(,0)……(6分)
(Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3(、)由∠OPA+∠FPE=90°,得∠OPA=∠FEP Rt△AOP∽Rt△PFE
由得 解得,
∴此时的点P3的坐标为(1,0)或(3,0)……(8分)
综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0)[来源:学科网](Ⅲ)抛物线的对称轴为…(9分)∵B、C关于x=对称 ∴MC=MB
要使最大,即是使最大
由三角形两边之差小于第三边得,当A、B、M在同一直线上时的值最大.易知直线AB的解折式为∴由 得
∴M(,-)……(11分)
【046】网](1)解:由得点坐标为
由得点坐标为∴ (2分)
由解得∴点的坐标为 (3分)
∴ (4分)
(2)解:∵点在上且
∴点坐标为(5分)又∵点在上且
∴点坐标为(6分)∴(7分)
(3)解法一:当时,如图1,矩形与重叠部分为五边形(时,为四边形).过作于,则
A
D
B
E
O
R
F
x
y
y
M
(图3)
G
C
A
D
B
E
O
C
F
x
y
y
G
(图1)
R
M
A
D
B
E
O
C
F
x
y
y
G
(图2)
R
M
∴即∴
∴
即
【047】解:方法一:如图(1-1),连接.
N
图(1-1)
A
B
C
D
E
F
M
由题设,得四边形和四边形关于直线对称.
∴垂直平分.∴ 1分
∵四边形是正方形,∴
∵设则
在中,.∴解得,即 3分
在和在中,,,
5分
设则∴
解得即 ∴ 7分
方法二:同方法一, 3分
如图(1-2),过点做交于点,连接
N
图(1-2)
A
B
C
D
E
F
M
G
∵∴四边形是平行四边形.
∴
同理,四边形也是平行四边形.∴
∵
在与中
∴ 5分
∵∴ 7分
类比归纳
(或);; 12分
【048】解:(1)由题意得 6=a(-2+3)(-2-1),∴a=-2,
∴抛物线的函数解析式为y=-2(x+3)(x-1)与x轴交于B(-3,0)、A(1,0)
设直线AC为y=kx+b,则有0=k+b,6=-2k+b,解得 k=-2,b=2,
∴直线AC为y=-2x+2
(2)①设P的横坐标为a(-2≤a≤1),则P(a,-2a+2),M(a,-2a2-4a+6)
∴PM=-2a2-4a+6-(-2a+2)=-2a2-2a+4=-2a2+a+14+92
=-2a+122+92,∴当a=-12时,PM的最大值为926分
②M1(0,6)M2-14,678
【049】解:(1)由题意得 解得
∴此抛物线的解析式为 3分
(2)连结、.因为的长度一定,所以周长最小,就是使最小.点关于对称轴的对称点是点,与对称轴的交点即为所求的点.
(第24题图)
O
A
C
x
y
B
E
P
D
设直线的表达式为则解得
∴此直线的表达式为
把代入得∴点的坐标为
(3)存在最大值,理由:∵即
∴∴即
∴
方法一:连结,
=[来源:Z。xx。k.Com]
=,∵∴当时, 9分
方法二:
=
=,∵∴当时, 9分
【050】解:(1)∵A
E
D
Q
P
B
F
C
N
M
∴.而,
∴,∴.∴当.
(2)∵平行且等于,[来源:学科网]
∴四边形是平行四边形.
∴.
∵,∴.∴.
∴..∴.
过B作,交于,过作,交于.
.∵,
∴.又,,,
,.
(3).
若,则有,解得.
(4)在和中,
∴.
∴在运动过程中,五边形的面积不变.