- 2.30 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学综合专题训练【动点专题】精品专题解析
专题一:建立动点问题的函数解析式
函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.
一、应用勾股定理建立函数解析式
例1如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.
(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.
(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).
H
M
N
G
P
O
A
B
图1
(3)如果△PGH是等腰三角形,试求出线段PH的长.
解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2.
(2)在Rt△POH中, , ∴.
在Rt△MPH中,
.
∴=GP=MP= (0<<6).
(3)△PGH是等腰三角形有三种可能情况:
①GP=PH时,,解得. 经检验, 是原方程的根,且符合题意.
②GP=GH时, ,解得. 经检验, 是原方程的根,但不符合题意.
③PH=GH时,.
综上所述,如果△PGH是等腰三角形,那么线段PH的长为或2.
二、应用比例式建立函数解析式
例2如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=.
(1)如果∠BAC=30°,∠DAE=105°,试确定与之间的函数解析式;
A
E
D
C
B
图2
(2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.
解:(1)在△ABC中,∵AB=AC,∠BAC=30°,
∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.
∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,
又∠DAB+∠ADB=∠ABC=75°,
∴∠CAE=∠ADB,
∴△ADB∽△EAC, ∴,
O
●
F
P
D
E
A
C
B
3(1)
∴, ∴.
(2)由于∠DAB+∠CAE=,又∠DAB+∠ADB=∠ABC=,且函数关系式成立,
∴=, 整理得.
当时,函数解析式成立.
例3如图3(1),在△ABC中,∠ABC=90°,AB=4,BC=3. 点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EP⊥ED,交射线AB于点P,交射线CB于点F.
●
P
D
E
A
C
B
3(2)
O
F
(1)求证: △ADE∽△AEP.
(2)设OA=,AP=,求关于的函数解析式,并写出它的定义域.
(3)当BF=1时,求线段AP的长.
解:(1)连结OD.
根据题意,得OD⊥AB,∴∠ODA=90°,∠ODA=∠DEP.
又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE∽△AEP.
(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴
OD∥BC, ∴,,
∴OD=,AD=. ∴AE==.
∵△ADE∽△AEP, ∴, ∴. ∴ ().
(3)当BF=1时,
①若EP交线段CB的延长线于点F,如图3(1),则CF=4.
∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE,
∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.
∴5-=4,得.可求得,即AP=2.
②若EP交线段CB于点F,如图3(2), 则CF=2.
类似①,可得CF=CE.
∴5-=2,得.
可求得,即AP=6.
综上所述, 当BF=1时,线段AP的长为2或6.
三、应用求图形面积的方法建立函数关系式
A
B
C
O
图8
H
例4如图,在△ABC中,∠BAC=90°,AB=AC=,⊙A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,△AOC的面积为.
(1)求关于的函数解析式,并写出函数的定义域.
(2)以点O为圆心,BO长为半径作圆O,求当⊙O与⊙A相切时,
△AOC的面积.
解:(1)过点A作AH⊥BC,垂足为H.
∵∠BAC=90°,AB=AC=, ∴BC=4,AH=BC=2. ∴OC=4-.
∵, ∴ ().
(2)①当⊙O与⊙A外切时,
在Rt△AOH中,OA=,OH=, ∴. 解得.
此时,△AOC的面积=.
②当⊙O与⊙A内切时,
在Rt△AOH中,OA=,OH=, ∴. 解得.
此时,△AOC的面积=.
综上所述,当⊙O与⊙A相切时,△AOC的面积为或.
专题二:动态几何型压轴题
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、以动态几何为主线的压轴题
(一)点动问题.
1.(09年徐汇区)如图,中,,,点在边上,且,以点为顶点作,分别交边于点,交射线于点.
(1)当时,求的长;
(2)当以点为圆心长为半径的⊙和以点为圆心长为半径的⊙相切时,
求的长;
(3)当以边为直径的⊙与线段相切时,求的长.
[题型背景和区分度测量点]
例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E点在AB边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系(相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解.
[区分度性小题处理手法]
1.直线与圆的相切的存在性的处理方法:利用d=r建立方程.
2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R±r()建立方程.
3.解题的关键是用含的代数式表示出相关的线段.
[ 略解]
解:(1) 证明∽∴ ,代入数据得,∴AF=2
(2) 设BE=,则利用(1)的方法,
相切时分外切和内切两种情况考虑: 外切,,;
内切,,.
∴当⊙和⊙相切时,的长为或.
(3)当以边为直径的⊙与线段相切时,.
类题 ⑴一个动点:09杨浦25题(四月、五月)、09静安25题、
⑵两个动点:09闸北25题、09松江25题、09卢湾25题、09青浦25题.
(二)线动问题
在矩形ABCD中,AB=3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把△ABE沿直线l翻折,点A与矩形ABCD的对称中心A'重合,求BC的长;
A
B
C
D
E
O
l
A′
(2)若直线l与AB相交于点F,且AO=AC,设AD的长为,五边形BCDEF的面积为S.①求S关于的函数关系式,并指出的取值范围;
②探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由.
[题型背景和区分度测量点]
A
B
C
D
E
O
l
F
本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线沿AB边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二.
[区分度性小题处理手法]
1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法.
2.直线与圆的相切的存在性的处理方法:利用d=r建立方程.
3.解题的关键是用含的代数式表示出相关的线段.
[ 略解]
(1)∵A’是矩形ABCD的对称中心∴A’B=AA’=AC
∵AB=A’B,AB=3∴AC=6
(2)①,,,
∴,
()
②若圆A与直线l相切,则,(舍去),∵∴不存在这样的,使圆A与直线l相切.
(三)面动问题
如图,在中,,、分别是边、上的两个动点(不与、重合),且保持,以为边,在点的异侧作正方形.
(1)试求的面积;
(2)当边与重合时,求正方形的边长;
(3)设,与正方形重叠部分的面积为,试求关于的函数关系式,并写出定义域;
(4)当是等腰三角形时,请直接写出的长.
[题型背景和区分度测量点]典型的共角相似三角形问题,试题为了形成坡度,在原题的基础上改编出求等腰三角形面积的第一小题,当D点在AB边上运动时,正方形
整体动起来,GF边落在BC边上时,恰好和教材中的例题对应,可以说是相似三角形对应的小高比大高=对应的小边比大边,探寻正方形和三角形的重叠部分的面积与线段AD的关系的函数解析式形成了第三小题,仍然属于面积类习题来设置区分测量点一,用等腰三角形的存在性来设置区分测量点二.
[区分度性小题处理手法]
1.找到三角形与正方形的重叠部分是解决本题的关键,如上图3-1、3-2重叠部分分别为正方形和矩形包括两种情况.
2.正确的抓住等腰三角形的腰与底的分类,如上图3-3、3-4、3-5用方程思想解决.
3.解题的关键是用含的代数式表示出相关的线段.
[ 略解]
解:(1).
(2)令此时正方形的边长为,则,解得.
(3)当时, ,
当时, .
(4).
[类题] 改编自09奉贤3月考25题,将条件(2)“当点M、N分别在边BA、CA上时”,去掉,同时加到第(3)题中.
A
B
F
D
E
M
N
C
已知:在△ABC中,AB=AC,∠B=30º,BC=6,点D在边BC上,点E在线段DC上,DE=3,△DEF是等边三角形,边DF、EF与边BA、CA分别相交于点M、N.
(1)求证:△BDM∽△CEN;
(2)设BD=,△ABC与△DEF重叠部分的面积为,求关于的函数解析式,并写出定义域.
(3)当点M、N分别在边BA、CA上时,是否存在点D,使以M为圆心, BM为半径的圆与直线EF相切, 如果存在,请求出x的值;如不存在,请说明理由.
例1:已知⊙O的弦AB的长等于⊙O的半径,点C在⊙O上变化(不与A、B)重合,求∠ACB的大小 .
分析:点C的变化是否影响∠
ACB的大小的变化呢?我们不妨将点C改变一下,如何变化呢?可能在优弧AB上,也可能在劣弧AB上变化,显然这两者的结果不一样。那么,当点C在优弧AB上变化时,∠ACB所对的弧是劣弧AB,它的大小为劣弧AB的一半,因此很自然地想到它的圆心角,连结AO、BO,则由于AB=OA=OB,即三角形ABC为等边三角形,则∠AOB=600,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=∠AOB=300,
当点C在劣弧AB上变化时,∠ACB所对的弧是优弧AB,它的大小为优弧AB的一半,由∠AOB=600得,优弧AB的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500,
因此,本题的答案有两个,分别为300或1500.
反思:本题通过点C在圆上运动的不确定性而引起结果的不唯一性。从而需要分类讨论。这样由点C的运动变化性而引起的分类讨论在解题中经常出现。
变式1:已知△ABC是半径为2的圆内接三角形,若,求∠C的大小.
本题与例1的区别只是AB与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形AOB中,,则,即,
从而当点C在优弧AB上变化时,∠C所对的弧是劣弧AB,它的大小为劣弧AB的一半,即,
当点C在劣弧AB上变化时,∠C所对的弧是优弧AB,它的大小为优弧AB的一半,由∠AOB=1200得,优弧AB的度数为3600-1200=2400,则由同弧所对的圆心角与圆周角的关系得出:∠C=1200,
因此或∠C=1200.
变式2: 如图,半经为1的半圆O上有两个动点A、B,若AB=1,
判断∠AOB的大小是否会随点A、B的变化而变化,若变化,求出变化范围,若不变化,求出它的值。
四边形ABCD的面积的最大值。
解:(1)由于AB=OA=OB,所以三角形AOB为等边三角形,则∠AOB=600,即∠AOB的大小不会随点A、B的变化而变化。
(2)四边形ABCD的面积由三个三角形组成,其中三角形AOB的面积为,而三角
形AOD与三角形BOC的面积之和为,又由梯形
的中位线定理得三角形AOD与三角形BOC的面积之和,要四边形
ABCD的面积最大,只需EH最大,显然EH≤OE=,当AB∥CD时,EH=OE,因此
四边形ABCD的面积最大值为+=.
对于本题同学们还可以继续思考:四边形ABCD的周长的变化范围.
变式3: 如图,有一块半圆形的木板,现要把它截成三角形板块.三角形的两个顶点分
别为A、B,另一个顶点C在半圆上,问怎样截取才能使截出的三角形的面积最大?要求说明理由(广州市2000年考题)
分析:要使三角形ABC的面积最大,而三角形ABC的底边AB为圆的直径为常量,只需AB边上的高最大即可。过点C作CD⊥AB于点D,连结CO,
由于CD≤CO,当O与D重合,CD=CO,因此,当CO与AB垂直时,即C为半圆弧
的中点时,其三角形ABC的面积最大。
本题也可以先猜想,点C为半圆弧的中点时,三角形ABC的面积最大,故只需另选一个位置C1(不与C重合),,证明三角形ABC的面积大于三角形ABC1的面积即可。如图
显然三角形 ABC1的面积=AB×C1D,而C1D< C1O=CO,则三角形 ABC1的面积=AB×C1DAD+DB (D) AC+CB与AD+DB的大小关系不确定
分析:本题可以通过动手操作一下,度量AC、CB、AD、DB的长度,可以尝试换几个位置量一量,得出结论(C)
例5:如图,过两同心圆的小圆上任一点C分别作小圆的直径CA和非直径的弦CD,延长CA和CD与大圆分别交于点B、E,则下列结论中正确的是( * )
(A) (B)
(C)(D)的大小不确定
分析:本题可以通过度量的方法进行,选(B)
本题也可以可以证明得出结论,连结DO、EO,则在三角形OED中,由于两边之差小于第三边,则
OE—OD3).动点M,N同时从B点出发,分别沿B→A,B→C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.
(1)若a=4厘米,t=1秒,则PM=厘米;
(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.
评析 本题是以双动点为载体,矩形为背景创设的存在性问题.试题由浅入深、层层递进,将几何与代数知识完美的综合为一题,侧重对相似和梯形面积等知识点的考查,本题的难点主要是题(3),解决此题的关键是运用相似三角形的性质用t的代数式表示PM,进而利用梯形面积相等列等式求出t与a的函数关系式,再利用t的范围确定的a取值范围. 第(4)小题是题(3)结论的拓展应用,在解决此问题的过程中,要有全局观念以及对问题的整体把握.
4 以双动点为载体,探求函数最值问题
例4 (2007年吉林省)如图9,在边长为82cm的正方形ABCD中,E、F是对角线AC上的两个动点,它们分别从点A、C同时出发,沿对角线以1cm/s的相同速度运动,过E作EH垂直AC交Rt△ACD的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连结HG、EB.设HE、EF、FG、GH围成的图形面积为S1,AE、EB、BA围成的图形面积为S2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为x(s),解答下列问题:
(1)当0