高考全国2卷理科数学 4页

  • 755.50 KB
  • 2021-05-13 发布

高考全国2卷理科数学

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年普通高等学校招生全国统一考试 理科数学II卷 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1. ‎ ‎ ‎ ‎2. 已知集合,则A中元素的个数为 ‎ ‎ ‎3. 函数的图象大致为 ‎4. 已知向量满足,则 ‎ ‎ ‎5. 双曲线的离心率为,则其渐近线方程为 ‎ ‎ ‎6. 在中,则AB=‎ ‎ ‎ ‎7. 为计算,设计了右侧的程序框图,则在空白框中应填入 ‎8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 ‎ ‎ ‎9. 在长方体中,则异面直线与所成角的余弦值为 ‎ ‎ ‎10. 若在是减函数,则a的最大值是 ‎ ‎ ‎11. 已知是定义域为的奇函数,满足. 若,则 ‎ ‎ ‎12. 已知是椭圆的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,为等腰三角形,,则C的离心率为 ‎ ‎ 二、填空题:本题共4小题,每小题5分,共20分。‎ ‎13. 曲线在点处的切线方程为_____________.‎ ‎14. 若满足约束条件则的最大值为________.‎ ‎15. 已知,则__________.‎ ‎16. 已知圆锥的顶点为S,母线SA、SB所成角的余弦值为,SA与圆锥底面所成角为. 若的面积为,则该圆锥的侧面积为__________.‎ 三、解答题:共70分,解答应写出必要的文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。‎ ‎(一)必考题:共60分 ‎17. (12 分)‎ 记为等差数列的前n项和,已知.‎ ‎(1)求的通项公式;‎ ‎(2)求,并求的最小值.‎ ‎18. (12分)‎ 下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.‎ 为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型。根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:.‎ ‎(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;‎ ‎(2)你认为用哪个模型得到的预测值更可靠?并说明理由。‎ ‎19. (12分)‎ 设抛物线的焦点为F,过F且斜率为k(k>0)的直线l与C交于A、B两点,‎ ‎(1)求l的方程;‎ ‎(2)求过A、B且与C的准线相切的圆的方程.‎ ‎20. (12分)‎ 如图,在三棱锥中,O为AC的中点.‎ ‎(1)证明:PO⊥平面ABC;‎ ‎(2)若点M在棱BC上,且二面角为,求PC与平面PAM所成角的正弦值.‎ ‎21. (12分)‎ 已知函数.‎ ‎(1)若a=1,证明:当时,;‎ ‎(2)若在只有一个零点,求a.‎ ‎(二) 选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。‎ ‎22. [选修4-4:极坐标与参数方程](10分)‎ 在直角坐标系中,曲线C的参数方程为(为参数),直线l的参数方程为(t为参数).‎ ‎(1)求C和l的直角坐标方程;‎ ‎(2)若曲线C截直线l所得线段的中点坐标为,求l的斜率.‎ ‎23. [选修4-5:不等式选讲](10分)‎ 设函数.‎ ‎(1)当时,求不等式的解集;‎ ‎(2)若,求a的取值范围.‎