- 663.25 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
导数高考题专练
1、(2012课标全国Ⅰ,文21)(本小题满分12分)
设函数f(x)= ex-ax-2
(Ⅰ)求f(x)的单调区间
(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值
2、 (2013课标全国Ⅰ,文20)(本小题满分12分)
已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求a,b的值;
(2)讨论f(x)的单调性,并求f(x)的极大值.
3、 (2015课标全国Ⅰ,文21).(本小题满分12分)
设函数.
(Ⅰ)讨论的导函数零点的个数;
(Ⅱ)证明:当时,。
4、(2016课标全国Ⅰ,文21)(本小题满分12分)
已知函数.
(I)讨论的单调性;
(II)若有两个零点,求的取值范围.
5、((2016全国新课标二,20)(本小题满分12分)
已知函数.
(I)当时,求曲线在处的切线方程;
(II)若当时,,求的取值范围.
6(2016山东文科。20)(本小题满分13分)
设f(x)=xlnx–ax2+(2a–1)x,a∈R.
(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.
2017.(12分)
已知函数ae2x+(a﹣2) ex﹣x.
(1)讨论的单调性;
(2)若有两个零点,求a的取值范围.
2018全国卷)(12分)
已知函数.
⑴讨论的单调性;
⑵若存在两个极值点,,证明:.
导数高考题专练(答案)
1
2解:(1)f′(x)=ex(ax+a+b)-2x-4.
由已知得f(0)=4,f′(0)=4.
故b=4,a+b=8.
从而a=4,b=4.
(2)由(1)知,f(x)=4ex(x+1)-x2-4x,
f′(x)=4ex(x+2)-2x-4=4(x+2)·.
令f′(x)=0得,x=-ln 2或x=-2.
从而当x∈(-∞,-2)∪(-ln 2,+∞)时,f′(x)>0;
当x∈(-2,-ln 2)时,f′(x)<0.
故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.
当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).
3
4 (I)
(i)设,则当时,;当时,.
所以在单调递减,在单调递增.
(ii)设,由得x=1或x=ln(-2a).
①若,则,所以在单调递增.
②若,则ln(-2a)<1,故当时,;
当时,,所以在单调递增,在单调递减.
③若,则,故当时,,当时,,所以在单调递增,在单调递减.
(II)(i)设,则由(I)知,在单调递减,在单调递增.
又,取b满足b<0且,
则,所以有两个零点.
(ii)设a=0,则所以有一个零点.
(iii)设a<0,若,则由(I)知,在单调递增.
又当时,<0,故不存在两个零点;若,则由(I)知,在单调递减,在单调递增.又当时<0,故不存在两个零点.
综上,a的取值范围为.
5试题解析:(I)的定义域为.当时,
,曲线在处的切线方程为
(II)当时,等价于
令,则
,
(i)当,时,,故在上单调递增,因此;
(ii)当时,令得
,
由和得,故当时,,在
单调递减,因此.
综上,的取值范围是
6试题分析:(Ⅰ)求导数
可得,
从而,
讨论当时,当时的两种情况即得.
(Ⅱ)由(Ⅰ)知,.分以下情况讨论:①当时,②当时,③当时,④当时,综合即得.
试题解析:(Ⅰ)由
可得,
则,
当时,
时,,函数单调递增;
当时,
时,,函数单调递增,
时,,函数单调递减.
所以当时,函数单调递增区间为;
当时,函数单调递增区间为,单调递减区间为.
(Ⅱ)由(Ⅰ)知,.
①当时,,单调递减.
所以当时,,单调递减.
当时,,单调递增.
所以在x=1处取得极小值,不合题意.
②当时,,由(Ⅰ)知在内单调递增,
可得当当时,,时,,
所以在(0,1)内单调递减,在内单调递增,
所以在x=1处取得极小值,不合题意.
③当时,即时,在(0,1)内单调递增,在 内单调递减,
所以当时,, 单调递减,不合题意.
④当时,即 ,当时,,单调递增,
当时,,单调递减,
所以f(x)在x=1处取得极大值,合题意.
综上可知,实数a的取值范围为.
2017.解:
(1)函数的定义域为
①若,则,在单调递增
②若,则由得
当时,;
当时,;
故在单调递减,在单调递增
③若,则由得
当时,;
当时,;
故在单调递减,在单调递增
(2)①若,则,所以
②若,则由(1)得,当时,取得最小值,
最小值为,
从而当且仅当,即时,
③若,则由(1)得,当时,取得最小值,
最小值为,
从而当且仅当,即时,
综上,的取值范围是
2018.解:(1)f(x)的定义域为,f ′(x)=aex–.
由题设知,f ′(2)=0,所以a=.
从而f(x)=,f ′(x)=.
当02时,f ′(x)>0.
所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.
(2)当a≥时,f(x)≥.
设g(x)=,则
当01时,g′(x)>0.所以x=1是g(x)的最小值点.
故当x>0时,g(x)≥g(1)=0.
因此,当时,.