- 139.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第63课时:第八章 圆锥曲线方程——抛物线
课题:抛物线
一.复习目标:掌握抛物线的定义、标准方程和简单的几何性质.
二.知识要点:
1.定义: .
2.标准方程: .
3.几何性质:
4.焦点弦长:过抛物线焦点的弦,若,
则 , , , .
5.抛物线的焦点为,是过焦点且倾斜角为的弦,
若,则 ; ; .
三.课前预习:
1.已知点,直线:,点是直线上的动点,若过垂直于轴的直线与线段的垂直平分线交于点,则点所在曲线是( )
圆 椭圆 双曲线 抛物线
2.设抛物线的焦点为,以为圆心,长为半径作一圆,与抛物线在轴上方交于,则的值为 ( )
8 18 4
3.过点的抛物线的标准方程是 .
焦点在上的抛物线的标准方程是 .
4.抛物线的焦点为,为一定点,在抛物线上找一点,当为最小时,则点的坐标 ,当为最大时,则点的坐标 .
四.例题分析:
例1.抛物线以轴为准线,且过点,证明:不论点在坐标平面内的位置如何变化,抛物线顶点的轨迹的离心率是定值.
例2.已知抛物线,过动点且斜率为的直线与该抛物线交于不同两点,,
(1)求取值范围;(2)若线段垂直平分线交轴于点,求面积的最大值.
例3. 已知抛物线与圆相交于两点,圆与轴正半轴交于点,直线是圆的切线,交抛物线与,并且切点在上.
(1)求三点的坐标.(2)当两点到抛物线焦点距离和最大时,求直线的方程.
五.课后作业:
1.方程表示的曲线不可能是( )
直线 抛物线 圆 双曲线
2.以抛物线的焦半径为直径的圆与轴位置关系是( )相交 相切 相离 以上三种均有可能
3.抛物线的顶点坐标是 ,焦点坐标是
,准线方程是 ,离心率是 ,通径长 .
4.过定点,作直线与曲线有且仅有1个公共点,则这样的直线共有 条.
5.设抛物线的过焦点的弦的两个端点为A、B,它们的坐标为,若,那么 .
6.抛物线的动弦长为,则弦的中点到轴的最小距离为 .
7.抛物线的顶点在坐标原点,对称轴为轴,上动点到直线的最短距离为1,求抛物线的方程.
8.是抛物线上的两点,且,
(1)求两点的横坐标之积和纵坐标之积;
(2)求证:直线过定点;
(3)求弦中点的轨迹方程;
(4)求面积的最小值;
(5)在上的射影轨迹方程.