- 1.36 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
绝密★启用前
2008年普通高等学校招生全国统一考试(江苏卷)
数 学
本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的
准考证号、姓名,并将条形码粘贴在指定位置上.
2.选择题答案使用2B
铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择
题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.
4.保持卡面清洁,不折叠,不破损.
5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.
参考公式:
锥体体积公式
其中为底面积,为高
球的表面积、体积公式
,
其中R为球的半径
样本数据,,,的标准差
其中为样本平均数
柱体体积公式
其中为底面积,为高
一、填空题:本大题共1小题,每小题5分,共70分.
1.的最小正周期为,其中,则= ▲ .
2.一个骰子连续投2 次,点数和为4 的概率 ▲ .
3.表示为,则= ▲ .
4.A=,则A Z 的元素的个数 ▲ .
5.,的夹角为,, 则 ▲ .
6.在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 ▲ .
7.某地区为了解70-80岁老人的日平均睡眠时间(单位:h),随即选择了50为老人进行调查,下表是这50为老人日睡眠时间的频率分布表。
序号
(i)
分组
(睡眠时间)
组中值
(Gi)
频数
(人数)
频率
(Fi)
1
[4,5]
4.5
6
0.12
2
[5,6]
5.5
10
0.20
3
[6,7]
6.5
20
0.40
4
[7,8]
7.5
10
0.20
5
[8,9]
8.5
4
0.08
在上述统计数据的分析中,一部分计算见算法流程图,则输出的S的值是 ▲ 。
8.设直线是曲线的一条切线,则实数b= ▲ .
9在平面直角坐标系xOy中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上的一点(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别与边AC , AB 交于点E、F ,某同学已正确求得OE的方程:,请你完成直线OF的方程:( ▲ ).
10.将全体正整数排成一个三角形数阵:
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
. . . . . . .
按照以上排列的规律,数阵中第n 行(n ≥3)从左向右的第3 个数为 ▲ .
11.已知,满足,则的最小值是 ▲ .
12.在平面直角坐标系xOy中,设椭圆1( 0)的焦距为2c,以点O为圆心,为半径作圆M,若过点P 所作圆M的两条切线互相垂直,则该椭圆的离心率为= ▲ .
13.满足条件AB=2, AC=BC 的三角形ABC的面积的最大值是 ▲ .
14.设函数(x∈R),若对于任意,都有≥0 成立,则实数= ▲ .
二、解答题:本大题共6小题,共计90分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.如图,在平面直角坐标系xOy中,以Ox轴为始边做两个锐角,,它们的终边分别与单位圆相交于A、B 两点,已知A、B 的横坐标分别为.
(Ⅰ)求tan()的值;
(Ⅱ)求的值.
16.如图,在四面体ABCD 中,CB= CD, AD⊥BD,点E 、F分别是AB、BD 的中点,
求证:(Ⅰ)直线EF ∥平面ACD ;
(Ⅱ)平面EFC⊥平面BCD .
17.如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A、B 及CD的中点P 处,已知AB=20km, CB =10km ,为了处理三家工厂的污水,现要在该矩形ABCD 的区域上(含边界),且与A、B 等距离的一点O 处建造一个污水处理厂,并铺设三条排污管道AO,BO,OP ,设排污管道的总长为km.
(Ⅰ)按下列要求写出函数关系式:
①设∠BAO=(rad),将表示成的函数关系式;
②设OP(km) ,将表示成的函数关系式.
(Ⅱ)请你选用(Ⅰ)中的一个函数关系,确定污水处理厂的位置,使三条排污管道总长度最短.
18.设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.
(Ⅰ)求实数b 的取值范围;
(Ⅱ)求圆C 的方程;
(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.
19.(Ⅰ)设是各项均不为零的等差数列(),且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
①当n =4时,求的数值;②求的所有可能值;
(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列.
20.若,,为常数,函数f (x)定义为:对每个给定的实数x,
(Ⅰ)求对所有实数x成立的充要条件(用表示);
(Ⅱ)设为两实数,满足,且∈,若,求证:在区间上的单调增区间的长度之和为(闭区间的长度定义为).
2008年普通高等学校招生全国统一考试(江苏卷)
数学参考答案
一、填空题:本大题共1小题,每小题5分,共70分.
1. 【答案】10
【解析】本小题考查三角函数的周期公式.
2.【答案】
【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故
3. 【答案】1
【解析】本小题考查复数的除法运算.∵ ,∴=0,=1,因此
4. 【答案】0
【解析】本小题考查集合的运算和解一元二次不等式.由得,∵Δ<0,∴集合A 为 ,因此A Z 的元素不存在.
5. 【答案】7
【解析】本小题考查向量的线性运算.
=,7
6. 【答案】
【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.
7. 【答案】6.42
8. 【答案】ln2-1
【解析】本小题考查导数的几何意义、切线的求法. ,令得
,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.
9【答案】
【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填.事实上,由截距式可得直线AB:,直线CP: ,两式相减得,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.
10.【答案】
【解析】本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n-1)个,即个,因此第n 行第3 个数是全体正整数中第+3个,即为.
11. 【答案】3
【解析】本小题考查二元基本不等式的运用.由得,代入得
,当且仅当=3 时取“=”.
12. 【答案】
【解析】设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故,解得.
13.【答案】
【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设BC=,则AC= ,
根据面积公式得=,根据余弦定理得
,代入上式得
=
由三角形三边关系有解得,
故当时取得最大值
14. 【答案】4
【解析】本小题考查函数单调性的综合运用.若x=0,则不论取何值,≥0显然成立;当x>0 即时,≥0可化为,
设,则, 所以 在区间上单调递增,在区间上单调递减,因此,从而≥4;
当x<0 即时,≥0可化为,
在区间上单调递增,因此,从而≤4,综上=4
二、解答题:解答应写出文字说明,证明过程或演算步骤.
15.【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.
解:由已知条件及三角函数的定义可知,,
因为,为锐角,所以=
因此
(Ⅰ)tan()=
(Ⅱ) ,所以
∵为锐角,∴,∴=
16.【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定.
解:(Ⅰ)∵ E,F 分别是AB,BD 的中点,
∴EF 是△ABD 的中位线,∴EF∥AD,
∵EF面ACD ,AD 面ACD ,∴直线EF∥面ACD .
(Ⅱ)∵ AD⊥BD ,EF∥AD,∴ EF⊥BD.
∵CB=CD, F 是BD的中点,∴CF⊥BD.
又EFCF=F,∴BD⊥面EFC.∵BD面BCD,∴面EFC⊥面BCD .
17.【解析】本小题主要考查函数最值的应用.
解:(Ⅰ)①延长PO交AB于点Q,由条件知PQ 垂直平分AB,若∠BAO=(rad) ,则, 故
,又OP=10-10ta,
所以,
所求函数关系式为
②若OP=(km) ,则OQ=10-,所以OA =OB=
所求函数关系式为
(Ⅱ)选择函数模型①,
令0 得sin ,因为,所以=,
当时, ,是的减函数;当时, ,是的增函数,所以当=时,。这时点P 位于线段AB 的中垂线上,且距离AB 边
km处。
18.【解析】本小题主要考查二次函数图象与性质、圆的方程的求法.
解:(Ⅰ)令=0,得抛物线与轴交点是(0,b);
令,由题意b≠0 且Δ>0,解得b<1 且b≠0.
(Ⅱ)设所求圆的一般方程为
令=0 得这与=0 是同一个方程,故D=2,F=.
令=0 得=0,此方程有一个根为b,代入得出E=―b―1.
所以圆C 的方程为.
(Ⅲ)圆C 必过定点(0,1)和(-2,1).
证明如下:将(0,1)代入圆C 的方程,得左边=0+1+2×0-(b+1)+b=0,右边=0,
所以圆C 必过定点(0,1).
同理可证圆C 必过定点(-2,1).
19.【解析】本小题主要考查等差数列、等比数列的有关知识,考查运用分类讨论的思想方法进行探索分析及论证的能力,满分16分。
解:首先证明一个“基本事实”:
一个等差数列中,若有连续三项成等比数列,则这个数列的公差d0=0
事实上,设这个数列中的连续三项a-d0,a,d+d0成等比数列,则
a2=(d-d0)(a+d0)
由此得d0=0
(1)(i) 当n=4时, 由于数列的公差d≠0,故由“基本事实”推知,删去的项只可能为a2或a3
①若删去,则由a1,a3,a4 成等比数列,得(a1+2d)2=a1(a1+3d)
因d≠0,故由上式得a1=-4d,即=-4,此时数列为-4d, -3d, -2d, -d,满足题设。
②若删去a3,则由a1,a2,a4 成等比数列,得(a1+d)2=a1(a1+3d)
因d≠0,故由上式得a1=d,即=1,此时数列为d, 2d, 3d, 4d,满足题设。
综上可知,的值为-4或1。
(ii)若n≥6,则从满足题设的数列a1,a2,……,an中删去一项后得到的数列,必有原数列中的连续三项,从而这三项既成等差数列又成等比数列,故由“基本事实”知,数列a1,a2,……,an的公差必为0,这与题设矛盾,所以满足题设的数列的项数n≤5,又因题设n≥4,故n=4或5.
当n=4时,由(i)中的讨论知存在满足题设的数列。
当n=5时,若存在满足题设的数列a1,a2,a3,a4,a5,则由“基本事实”知,删去的项只能是a3,从而a1,a2,a4,a5成等比数列,故
(a1+d)2=a1(a1+3d)
及
(a1+3d)2=(a1+d)(a1+4d)
分别化简上述两个等式,得a1d=d2及a1d=-5d,故d=0,矛盾。因此,不存在满足题设的项数为5的等差数列。
综上可知,n只能为4.
(2)假设对于某个正整数n,存在一个公差为d′的n项等差数列b1,b1+ d′,……,b1+(n-1) d′(b1 d′≠0),其中三项b1+m1 d′,b1+m2 d′,b1+m3 d′成等比数列,这里0≤m1