- 43.60 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
函数与方程及函数的实际应用
一、选择题(每小题5分,共25分)
1.函数f(x)=-+log2x的一个零点落在下列哪个区间
( ).
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
2.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为
( ).
A.(1.4,2) B.(1.1,4)
C. D.
3.设函数f(x)=x-ln x,则函数f(x)
( ).
A.在区间,(1,e)内均有零点
B.在区间,(1,e)内均无零点
C.在区间内有零点,在(1,e)内无零点
D.在区间内无零点,在(1,e)内有零点
4.已知f(x)=则函数g(x)=f(x)-ex的零点个数为
( ).
A.1 B.2 C.3 D.4
5.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品
( ).
A.60件 B.80件
C.100件 D.120件
二、填空题(每小题5分,共15分)
6.已知0<a<1,函数f(x)=ax-|logax|的零点个数为________.
7.已知函数f(x)=x-log3x,若x0是函数y=f(x)的零点,且0<x1<x0,则f(x1)________0(填“>”、“<”、“≥”、“≤”).
8.设函数y=x3与y=x-2的图象的交点为(x0,y0),若x0所在的区间是(n,n+1)(n∈Z),则n=________.
三、解答题(本题共3小题,共35分)
9.(11分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足f(t)=20-|t-10|(元).
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.
10.(12分)已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)问是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t.
11.(12分)设函数f(x)=x3-x2+6x-a.
(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
参考答案
1.B [根据函数的零点存在定理,要验证函数的零点的位置,只要求出函数在区间的两个端点上的函数值,得到结果,根据函数的零点存在定理得到f(1)·f(2)<0.故选B.]
2.D [令f(x)=x3-2x-1,
则f(1)=-2<0,f (2)=3>0,f=-<0.
故下一步可断定该根所在区间为.]
3.D [∵f′(x)=-=,当x∈时,f′(x)<0,
∴f(x)在上单调.
f=-ln=1+>0,f (1)=-ln 1=>0,
f(e)=-ln e<0,所以f(x)在(1,e)内有零点.]
4.B [在同一平面直角坐标系中画出函数y=f (x)与y=ex的图象,结合图形可知,它们有两个公共点,因此函数g(x)=f(x)-ex的零点个数是2,选B.]
5.B [若每批生产x件产品,则每件产品的生产准备费用是,存储费用是,总的费用是+≥2=20,当且仅当=时取等号,即x=80.]
6.解析 分别画出函数y=ax(0<a<1)与y=|logax|(0<a<1)的图象,如图所示.
答案 2
7.解析 当x=x0时,
f(x0)=x0-log3x0=0,
当0<x1<x0时,
f(x1)=x1-log3x1>0,
如图所示.
答案 >
8.解析 由函数图象知,1<x0<2.
答案 1
9.解 (1)y=g(t)·f(t)=(80-2t)·
=(40-t)(40-|t-10|)
=
(2)当0≤t<10时,y的取值范围是[1 200,1 225],
在t=5时,y取得最大值为1 225;
当10≤t≤20时, y的取值范围是[600,1 200],
在t=20时,y取得最小值为600.
总之,第5天日销售额y取得最大值为1 225元;第20天日销售额y取得最小值为600元.
10.解 (1)∵函数f(x)=x2-16x+q+3的对称轴是x=8,
∴f(x)在区间[-1,1]上是减函数.
∵函数在区间[-1,1]上存在零点,则必有即∴-20≤q≤12.
(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x=8.
①当0≤t≤6时,在区间[t,10]上,f(t)最大,f(8)最小,
∴f(t)-f(8)=12-t,即t2-15t+52=0,
解得t=,∴t=;
②当6<t≤8时,在区间[t,10]上f(10)最大,f(8)最小,
∴f(10)-f(8)=12-t,解得t=8;
③当8<t<10时,在区间[t,10]上,f(10)最大,f(t)最小,
∴f(10)-f(t)=12-t,即t2-17t+72=0,
解得t=8或t=9,∴t=9.
综上可知,存在常数t=, 8,9满足条件.
11.解 (1)f′(x)=3x2-9x+6=3(x-1)(x-2),
因为x∈(-∞,+∞),f′(x)≥m,
即3x2-9x+(6-m)≥0恒成立,
所以Δ=81-12(6-m)≤0,得m≤-,
即m的最大值为-.
(2)因为当x<1时,f′(x)>0;
当1<x<2时,f′(x)<0;当x>2时,f′(x)>0;
所以当x=1时,f(x)取极大值f(1)=-a;
当x=2时,f(x)取极小值f(2)=2-a;
故当f(2)>0或f(1)<0时,
方程f(x)=0仅有一个实根.
解得a<2或a>.