• 95.70 KB
  • 2021-05-14 发布

全国卷进三年高考数列试题包含全国123卷

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
三年高考数列试题 ‎1.(2018•卷Ⅰ)记 为等差数列 的前n项和,若 ,则a5=(   )‎ A. -12          B. -10         C. 10      D. 12‎ ‎2.(2018•卷Ⅰ)记 为数列 的前n项的和,若 ,则 =________. ‎ ‎3.(2018•卷Ⅰ)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn= ‎ ‎(1)求b1,b2,b3 ‎ ‎(2)判断数列{bn}是否为等比数列,并说明理由; ‎ ‎(3)求{an}的通项公式 ‎ ‎4.(2018•卷Ⅱ)记Sn为等差数列{an}的前n项和,已知a1=-7,S3=-15. ‎ ‎(1)求{an}的通项公式; ‎ ‎(2)求Sn , 并求Sn的最小值。 ‎ ‎5.(2018•卷Ⅲ)等比数列 中, . ‎ ‎(1)求 的通项公式; ‎ ‎(2)记 为 的前 项和,若Sm=63,求m。 ‎ ‎6.(2017•卷1)记为等差数列的前项和.若,,则的公差为 A.1 B.2 C.4 D.8‎ 7. ‎(2017•卷1)(12分)记Sn为等比数列的前n项和,已知S2=2,S3=-6.‎ ‎(1)求的通项公式;‎ ‎(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列。‎ ‎8.(2017•卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A.1盏 B.3盏 C.5盏 D.9盏 ‎9.(2017•卷Ⅱ)等差数列的前项和为,,,则____________.‎ ‎10.(2017•卷Ⅱ)(12分)‎ 已知等差数列的前项和为,等比数列的前项和为,. ‎ ‎(1)若,求的通项公式;‎ ‎(2)若,求.‎ ‎11.(2017•卷Ⅲ)等差数列的首项为1,公差不为0.若a2,a3,a6成等比数列,则前6项的和为 A.-24 B.-3 C.3 D.8‎ ‎12.(2017•卷Ⅲ)设等比数列满足a1 + a2 = –1, a1 – a3 = –3,则a4 = ___________.‎ ‎13.(2017•卷Ⅲ)(12分)‎ 设数列满足.‎ ‎(1)求的通项公式;‎ ‎(2)求数列 的前n项和.‎ ‎14. (2016•卷1)已知等差数列前9项的和为27,,则 A.100 B.99 C.98 D .97‎ ‎15 (2016•卷1)设等比数列an满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为( )‎ ‎16.(2016•卷1)(本题满分12分)已知是公差为3的等差数列,数列满足,.‎ ‎(I)求的通项公式;(II)求的前n项和.‎ ‎17.(2016•卷2)(本题满分12分)‎ 为等差数列的前n项和,且记,其中表示不超过x的最大整数,如.‎ ‎(I)求;‎ ‎(II)求数列的前1 000项和.‎ ‎18.(2016•卷2)(本小题满分12分)‎ 等差数列{}中,‎ (I) 求{}的通项公式;‎ (II) ‎(II)设=[],求数列{}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2‎ ‎19.(2016•卷3)(本小题满分12分)‎ 已知数列an的前n项和Sn‎=1+a,Sn‎=1+‎an,其中‎≠‎0‎ ‎(I)证明an是等比数列,并求其通项公式 ‎(II)若S‎5‎‎=‎‎31‎‎32‎ ,求 ‎20.(2016•卷3)(本小题满分12分)已知各项都为正数的数列满足,.‎ ‎(I)求;‎ ‎(II)求的通项公式.‎