• 548.50 KB
  • 2021-05-14 发布

高考辽宁卷数学试题及答案

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2004年普通高等学校招生辽宁卷数学试题 第Ⅰ卷(选择题 共60分)‎ 参考公式:‎ 如果事件A、B互斥,那么 球的表面积公式 P(A+B)=P(A)+P(B) ‎ 如果事件A、B相互独立,那么 P(A·B)=P(A)·P(B) 其中R表示球的半径球的体积公式 如果事件A在一次试验中发生的概率是 ‎ P,那么n次独立重复试验中恰好发生k ‎ 次的概率 其中R表示球的半径 一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有 一项是符合题目要求的.‎ ‎1.若的终边所在象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎2.对于,给出下列四个不等式 ‎ ① ②‎ ‎ ③ ④‎ ‎ 其中成立的是 ‎ A.①与③ B.①与④ C.②与③ D.②与④‎ ‎3.已知α、β是不同的两个平面,直线,命题无公共点;命题 . 则的 ‎ A.充分而不必要的条件 B.必要而不充分的条件 ‎ C.充要条件 D.既不充分也不必要的条件 ‎4.设复数z满足 ‎ A.0 B.1 C. D.2‎ ‎5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是 ‎ p2,那么恰好有1人解决这个问题的概率是 ‎ A. B.‎ ‎ C. D.‎ ‎6.已知点、,动点,则点P的轨迹是 ‎ A.圆 B.椭圆 C.双曲线 D.抛物线 ‎7.已知函数,则下列命题正确的是 ‎ A.是周期为1的奇函数 B.是周期为2的偶函数 ‎ C.是周期为1的非奇非偶函数 D.是周期为2的非奇非偶函数 ‎8.已知随机变量的概率分布如下:‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ m ‎ 则 ‎ A. B. C. D.‎ ‎9.已知点、,动点P满足. 当点P的纵坐标是时,‎ ‎ 点P到坐标原点的距离是 ‎ A. B. C. D.2‎ ‎10.设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该 平面的距离是球半径的一半,则球的体积是 A. B. C. D.‎ ‎11.若函数的图象(部分)如图所示,则的取值是 ‎ A. B.‎ ‎ C. D.‎ ‎12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 A.234 B.346 C.350 D.363‎ 第Ⅱ卷(非选择题 共90分)‎ 二、填空题:本大题共4小题,每小题4分,共16分. ‎ ‎13.若经过点P(-1,0)的直线与圆相切,则此直线在y轴上 的截距是 .‎ ‎14.= .‎ ‎15.如图,四棱柱ABCD—A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且,则侧棱AA1和截面B1D1DB的距离是 . ‎ ‎16.口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出 ‎5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 .(以 数值作答)‎ 三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.‎ ‎17.(本小题满分12分)‎ 已知四棱锥P—ABCD,底面ABCD是菱形,平面ABCD,PD=AD,‎ 点E为AB中点,点F为PD中点.‎ ‎ (1)证明平面PED⊥平面PAB;‎ ‎ (2)求二面角P—AB—F的平面角的余弦值. ‎ ‎18.(本小题满分12分)‎ 设全集U=R ‎ (1)解关于x的不等式 ‎ (2)记A为(1)中不等式的解集,集合,‎ ‎ 若恰有3个元素,求a的取值范围.‎ ‎19.(本小题满分12分)‎ 设椭圆方程为,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足,点N的坐标为,当l绕点M旋转时,求:‎ ‎ (1)动点P的轨迹方程;‎ ‎ (2)的最小值与最大值. ‎ ‎20.(本小题满分12分)‎ 甲方是一农场,乙方是一工厂. 由于乙方生产须占用甲方的资源,因此甲方有权向乙方 索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x ‎(元)与年产量t(吨)满足函数关系.若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格),‎ ‎ (1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润 的年产量;‎ ‎ (2)甲方每年受乙方生产影响的经济损失金额(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?‎ ‎21.(本小题满分14分)‎ 已知函数的最大值不大于,又当 ‎ (1)求a的值;‎ ‎ (2)设 ‎22.(本小题满分12分)‎ 已知函数.‎ ‎ (1)求函数的反函数的导数 ‎ (2)假设对任意成立,求实 数m的取值范围.‎ ‎2004年普通高等学校招生辽宁卷数学试题 答案与评分参考 一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.‎ ‎1.D 2.D 3.B 4.C 5.B 6.D 7.B 8.C 9.A 10.A 11.C 12.B 二、填空题:本题考查基本知识和基本运算. 每小题4分,满分16分.‎ ‎13.1 14. 15.a 16.‎ 三、解答题 ‎17.本小题主要考查空间中的线面关系,四棱锥的有关概念及余弦定理等基础知识,考查空 间想象能力和推理能力. 满分12分. ‎ ‎ (1)证明:连接BD.‎ 为等边三角形.‎ 是AB中点,…………2分 面ABCD,AB面ABCD,‎ 面PED,PD面PED,面PED.…………4分 面PAB,面PAB. ……………………6分 ‎(2)解:平面PED,PE面PED,‎ 连接EF,PED,‎ 为二面角P—AB—F的平面角. ………… 9分 设AD=2,那么PF=FD=1,DE=.‎ 在 即二面角P—AB—F的平面角的余弦值为…12分 ‎18.本小题主要考查集合的有关概念,含绝对值的不等式,简单三角函数式的化简和已知三 角函数值求角等基础知识,考查简单的分类讨论方法,以及分析问题和推理计算能力. 满分12分.‎ 解:(1)由 当时,解集是R;‎ 当时,解集是……………………3分 ‎(2)当时, =;‎ 当时,=……………………5分 因 由…………8分 当怡有3个元素时,a就满足 解得…12分 ‎19.本小题主要考查平面向量的概念、直线方程的求法、椭圆的方程和性质等基础知识,以 及轨迹的求法与应用、曲线与方程的关系等解析几何的基本思想和综合解题能力. 满分 ‎12分. ‎ ‎(1)解法一:直线l过点M(0,1)设其斜率为k,则l的方程为 记、由题设可得点A、B的坐标、是方程组 ‎②‎ ‎①‎ ‎ 的解.…………………………2分 将①代入②并化简得,,所以 于是 ‎…………6分 设点P的坐标为则 消去参数k得 ③‎ 当k不存在时,A、B中点为坐标原点(0,0),也满足方程③,所以点P的轨迹方 程为………………8分 解法二:设点P的坐标为,因、在椭圆上,所以 ‎ ④ ⑤‎ ‎④—⑤得,所以 当时,有 ⑥‎ 并且 ⑦ 将⑦代入⑥并整理得 ⑧‎ 当时,点A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,0)‎ 也满足⑧,所以点P的轨迹方程为 ‎………………8分 ‎(2)解:由点P的轨迹方程知所以 ‎……10分 故当,取得最小值,最小值为时,取得最大值,‎ 最大值为……………………12分 注:若将代入的表达式求解,可参照上述标准给分. ‎ ‎21.本小题主要考查函数和不等式的概念,考查数学归纳法,以及灵活运用数学方法分析和 解决问题的能力. 满分14分. ‎ ‎(1)解:由于的最大值不大于所以 ‎ ① ………………3分 又所以. ②‎ 由①②得………………6分 ‎(2)证法一:(i)当n=1时,,不等式成立;‎ 因时不等式也成立.‎ ‎(ii)假设时,不等式成立,因为的 对称轴为知为增函数,所以由得 ‎………………8分 于是有 ‎ …………12分 所以当n=k+1时,不等式也成立. ‎ 根据(i)(ii)可知,对任何,不等式成立.…………14分 证法二:(i)当n=1时,,不等式成立;‎ ‎(ii)假设时不等式成立,即,则当n=k+1时,‎ ‎………………8分 因所以 ‎……12分 于是 因此当n=k+1时,不等式也成立.‎ 根据(i)(ii)可知,对任何,不等式成立.…………14分 证法三:(i)当n=1时,不等式成立;‎ ‎(ii)假设时.‎ 若则 ①…………8分 所以都是增函数.‎ 因此当时,的最大值为的最小值为 而不等式②成立当且仅当即 ‎,于是得 ………………12分 解法二:由得 设 于是原不等式对于恒成立等价于 ③…7分 由,注意到 故有,从而可均在 上单调递增,因此不等式③成立当且仅当 即 ………………12分