- 1.24 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
12B-SX-0000015
学校:____________________ _______年_______班 姓名:____________________ 学号:________
- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -
绝密★启用前
2016年普通高等学校招生全国统一考试
理科数学 全国III卷
(全卷共10页)
(适用地区:广西、云南、四川)
注意事项:
1.
本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
2.
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.
回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
4.
考试结束后,将本试卷和答案卡一并交回。
第I卷
一、 选择题:本题共12小题,每小题5分。在每个小题给出的四个选项中, 只有一项是符合题目要求的。
(1)设集合 ,则ST=
(A) [2,3] (B)(-,2] [3,+)
(C) [3,+) (D)(0,2] [3,+)
(2)若z=1+2i,则
(A)1 (B) -1 (C) i (D) -i
(3)已知向量 , 则ABC=
(A)300 (B) 450 (C) 600 (D)1200
(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是
(A) 各月的平均最低气温都在00C以上
(B) 七月的平均温差比一月的平均温差大
(C) 三月和十一月的平均最高气温基本相同
(D) 平均气温高于200C的月份有5个
(5)若 ,则
(A) (B) (C) 1 (D)
(6)已知,,,则
(A) (B) (C) (D)
(7)执行下图的程序框图,如果输入的,那么输出的
(A)3
(B)4
(C)5
(D)6
- 19 - - 20 -
12B-SX-0000015
(8)在中,,BC边上的高等于,则
(A) (B)
(C) (D)
(9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为
(A)
(B)
(C)90
(D)81
(10) 在封闭的直三棱柱内有一个体积为V的球,若,,,,则V的最大值是
(A)4π (B) (C)6π (D)
(11) 已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为
(A) (B) (C) (D)
(12) 定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有
(A)18个 (B)16个 (C)14个 (D)12个
第Ⅱ卷
本卷包括必考题和选考题两部分。第(13)~(21)题为必考题,每个试题都必须作答。第(22)~(24)题为选考题,考生根据要求作答。
二、填空题:本大题共3小题,每小题5分
(13) 若满足约束条件 则的最大值为____________.
(14) 函数的图像可由函数的图像至少向
右平移_____________个单位长度得到.
(15) 已知为偶函数,当时,,则曲线
在点处的切线方程是_______________。
(16) 已知直线:与圆交于两点,过
分别做的垂线与轴交于两点,若,则
__________________.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
已知数列的前n项和,其中.
(Ⅰ)证明是等比数列,并求其通项公式;
(Ⅱ)若 ,求.
- 19 - - 20 -
12B-SX-0000015
(18)(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:,,,≈2.646.
参考公式:
回归方程中斜率和截距的最小二乘估计公式分别为:
- 19 - - 20 -
12B-SX-0000015
(19)(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(I)证明MN∥平面PAB;
(II)求直线AN与平面PMN所成角的正弦值.
(20)(本小题满分12分)
已知抛物线:的焦点为,平行于轴的两条直线分别交 于两点,交的准线于两点.
(Ⅰ)若在线段上,是的中点,证明;
(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.
- 19 - - 20 -
12B-SX-0000015
(21)(本小题满分12分)
设函数,其中,记的最大值为.
(Ⅰ)求;
(Ⅱ)求;
(Ⅲ)证明.
请考生在(22)、(23)、(24)题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。
(22)(本小题满分10分)
选修4-1:几何证明选讲
如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.
(I)若∠PFB=2∠PCD,求∠PCD的大小;
(II)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD.
- 19 - - 20 -
12B-SX-0000015
(23)(本小题满分10分)
选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为 .
(Ⅰ)写出的普通方程和的直角坐标方程;
(Ⅱ)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.
(24)(本小题满分10分)
选修4-5:不等式选讲
已知函数
(Ⅰ)当a=2时,求不等式的解集;
(Ⅱ)设函数当时,,求的取值范围.
- 19 - - 20 -
12B-SX-0000015
2016年普通高等学校招生全国统一考试
理科数学 全国III卷 答案
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)D (2)C (3)A (4)D (5)A (6)A (7)B (8)C (9)B (10)B (11)A (12)C
二、填空题:本大题共3小题,每小题5分
(13) (14) (15) (16)4
三、解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
解:
(Ⅰ)由题意得,故,,.
由,得,即.由,得,所以.
因此是首项为,公比为的等比数列,于是.
(Ⅱ)由(Ⅰ)得,由得,即,解得.
(18)(本小题满分12分)
解:
(Ⅰ)由折线图这数据和附注中参考数据得
,,,
,
.
因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系.
(Ⅱ)由及(Ⅰ)得,
.
所以,关于的回归方程为:.
将2016年对应的代入回归方程得:.
所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.
(19)(本小题满分12分)
- 19 - - 20 -
12B-SX-0000015
解:
(Ⅰ)由已知得,取的中点,连接,由为中点知,.
又,故平行且等于,四边形为平行四边形,于是.
因为平面,平面,所以平面.
(Ⅱ)取的中点,连结,由得,从而,且.
以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,由题意知,
,,,,
,,.
设为平面的法向量,则,即,可取,
于是.
(20)(本小题满分12分)
解:
由题设.设,则,且
.
记过两点的直线为,则的方程为. .....3分
(Ⅰ)由于在线段上,故.
记的斜率为,的斜率为,则
.
所以. ......5分
(Ⅱ)设与轴的交点为,
则.
由题设可得,所以(舍去),.
- 19 - - 20 -
12B-SX-0000015
设满足条件的的中点为.
当与轴不垂直时,由可得.
而,所以.
当与轴垂直时,与重合.所以,所求轨迹方程为. ....12分
(21)(本小题满分12分)
解:
(Ⅰ).
(Ⅱ)当时,
因此,. ………4分
当时,将变形为.
令,则是在上的最大值,,,且当时,取得极小值,极小值为.
令,解得(舍去),.
(ⅰ)当时,在内无极值点,,,,所以.
(ⅱ)当时,由,知.
又,所以.
综上,. ………9分
(Ⅲ)由(Ⅰ)得.
当时,.
当时,,所以.
当时,,所以.
请考生在[22]、[23]、[24]题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。
22.(本小题满分10分)选修4-1:几何证明选讲
解:
(Ⅰ)连结,则.
因为,所以,又,所以.
- 19 - - 20 -
12B-SX-0000015
又,所以, 因此.
(Ⅱ)因为,所以,由此知 四点共圆,其圆心既在的垂直平分线上,又在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线上,因此.
23.(本小题满分10分)选修4-4:坐标系与参数方程
解:
(Ⅰ)的普通方程为,的直角坐标方程为. ……5分
(Ⅱ)由题意,可设点的直角坐标为,因为是直线,所以的最小值,
即为到的距离的最小值,
.
当且仅当时,取得最小值,最小值为,此时的直角坐标为.
24.(本小题满分10分)选修4-5:不等式选讲
解:
(Ⅰ)当时,.
解不等式,得.
因此,的解集为.
(Ⅱ)当时,
,
当时等号成立,
所以当时,等价于. ① ……7分
当时,①等价于,无解.
当时,①等价于,解得.
所以的取值范围是.
- 19 - - 20 -