• 1.04 MB
  • 2021-05-14 发布

全国高考理科数学试题分类汇编9圆锥曲线

  • 28页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2013年全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 ‎1 .(2013年高考江西卷(理))过点引直线与曲线相交于A,B两点,O为坐标原点,当AOB的面积取最大值时,直线的斜率等于 (  )‎ A. B. C. D.‎ ‎【答案】B ‎ ‎2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))双曲线的顶点到其渐近线的距离等于 (  )‎ A. B. C. D.‎ ‎【答案】C ‎ ‎3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))已知中心在原点的双曲线的右焦点为,离心率等于,在双曲线的方程是 (  )‎ A. B. C. D.‎ ‎【答案】B ‎ ‎4 .(2013年高考新课标1(理))已知双曲线:()的离心率为,则的渐近线方程为 (  )‎ A. B. C. D.‎ ‎【答案】C ‎ ‎5 .(2013年高考湖北卷(理))已知,则双曲线与的 (  )‎ A.实轴长相等 B.虚轴长相等 C.焦距相等 D.离心率相等 ‎【答案】D ‎ ‎6 .(2013年高考四川卷(理))抛物线的焦点到双曲线的渐近线的距离是 (  )‎ A. B. C. D.‎ ‎【答案】B ‎ ‎7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))如图,是椭圆与双曲线的公共焦点,分别是,在第二、四象限的公共点.若四边形为矩形,则的离心率是 O x y A B F1‎ F2‎ ‎(第9题图)‎ ‎ (  )‎ A. B. C. D.‎ ‎【答案】D ‎ ‎8 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线的两条渐近线与抛物线的准线分别交于A, B两点, O为坐标原点. 若双曲线的离心率为2, △AOB的面积为, 则p = (  )‎ A.1 B. C.2 D.3‎ ‎【答案】C ‎ ‎9 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))椭圆的左、右顶点分别为,点在上且直线的斜率的取值范围是,那么直线斜率的取值范围是 (  )‎ A. B. C. D.‎ ‎【答案】B ‎ ‎10.(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))已知抛物线与点,过的焦点且斜率为的直线与交于两点,若,则 (  )‎ A. B. C. D.‎ ‎【答案】D ‎ ‎11.(2013年高考北京卷(理))若双曲线的离心率为,则其渐近线方程为 (  )‎ A.y=±2x B.y= C. D.‎ ‎【答案】B ‎ ‎12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线:的焦点与双曲线:的右焦点的连线交于第一象限的点.若在点处的切线平行于的一条渐近线,则 (  )‎ A. B. C. D.‎ ‎【答案】D ‎ ‎13.(2013年高考新课标1(理))已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为 (  )‎ A. B. C. D.‎ ‎【答案】D ‎ ‎14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))设抛物线的焦点为,点在上,,若以为直径的圆过点,则的方程为 (  )‎ A.或 B.或 ‎ C.或 D.或 ‎ ‎【答案】C ‎ ‎15.(2013年上海市春季高考数学试卷(含答案))已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是 (  )‎ A.圆 B.椭圆 C.抛物线 D.双曲线 ‎【答案】C ‎ ‎16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆,圆,分别是圆上的动点,为轴上的动点,则的最小值为 (  )‎ A. B. C. D. ‎ ‎【答案】A ‎ 二、填空题 ‎17.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))双曲线的两条渐近线的方程为_____________.‎ ‎【答案】 ‎ ‎18.(2013年高考江西卷(理))抛物线的焦点为F,其准线与双曲线相交于两点,若为等边三角形,则_____________‎ ‎【答案】6 ‎ ‎19.(2013年高考湖南卷(理))设是双曲线的两个焦点,P是C上一点,若且的最小内角为,则C的离心率为___.‎ ‎【答案】 ‎ ‎20.(2013年高考上海卷(理))设AB是椭圆的长轴,点C在上,且,若AB=4,,则的两个焦点之间的距离为________‎ ‎【答案】. ‎ ‎21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))已知直线交抛物线于两点.若该抛物线上存在点,使得为直角,则的取值范围为___ _____.‎ ‎【答案】 ‎ ‎22.( 2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))抛物线在处的切线与两坐标轴围成三角形区域为(包含三角形内部与边界).若点是区域内的任意一点,则的取值范围是__________.‎ ‎【答案】 ‎ ‎23.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点为,设原点到直线的距离为,到的距离为,若,则椭圆的离心率为_______.‎ ‎【答案】 ‎ ‎24.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))椭圆的左.右焦点分别为,焦距为‎2c,若直线与椭圆的一个交点M满足,则该椭圆的离心率等于__________‎ ‎【答案】 ‎ ‎25.(2013年高考陕西卷(理))双曲线的离心率为, 则m等于___9_____.‎ ‎【答案】9 ‎ ‎26.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知椭圆的左焦点为与过原点的直线相交于两点,连接,若,则的离心率______.‎ ‎【答案】 ‎ ‎27.(2013年上海市春季高考数学试卷(含答案))抛物线的准线方程是_______________‎ ‎【答案】 ‎ ‎28.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))在平面直角坐标系中,设定点,是函数()图象上一动点,若点之间的最短距离为,则满足条件的实数的所有值为_______.‎ ‎【答案】或 ‎ ‎29.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设为抛物线的焦点,过点的直线交抛物线于两点,点为线段的中点,若,则直线的斜率等于________.‎ ‎【答案】 ‎ 三、解答题 ‎30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.‎ 已知椭圆的两个焦点分别为、,短轴的两个端点分别为 ‎(1)若为等边三角形,求椭圆的方程;‎ ‎(2)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.‎ ‎[解](1)‎ ‎(2)‎ ‎【答案】[解](1)设椭圆的方程为. ‎ 根据题意知, 解得, ‎ 故椭圆的方程为. ‎ ‎(2)容易求得椭圆的方程为. ‎ 当直线的斜率不存在时,其方程为,不符合题意; ‎ 当直线的斜率存在时,设直线的方程为. ‎ 由 得. ‎ 设,则 ‎ ‎ ‎ 因为,所以,即 ‎ ‎ ‎ ‎ ‎ ‎, ‎ 解得,即. ‎ 故直线的方程为或. ‎ ‎31.(2013年高考四川卷(理))已知椭圆:的两个焦点分别为,且椭圆经过点.‎ ‎(Ⅰ)求椭圆的离心率;‎ ‎(Ⅱ)设过点的直线与椭圆交于、两点,点是线段上的点,且,求点的轨迹方程.‎ ‎【答案】解: ‎ 所以,. ‎ 又由已知,,‎ 所以椭圆C的离心率 ‎ 由知椭圆C的方程为. ‎ 设点Q的坐标为(x,y). ‎ ‎(1)当直线与轴垂直时,直线与椭圆交于两点,此时点坐标为 ‎ ‎(2) 当直线与轴不垂直时,设直线的方程为. ‎ 因为在直线上,可设点的坐标分别为,则 ‎ ‎. 又 ‎ 由,得 ‎ ‎,即 ‎ ‎ ① ‎ 将代入中,得 ‎ ‎ ② ‎ 由得. ‎ 由②可知 ‎ 代入①中并化简,得 ③ ‎ 因为点在直线上,所以,代入③中并化简,得. ‎ 由③及,可知,即. ‎ 又满足,故. ‎ 由题意,在椭圆内部,所以, ‎ 又由有 ‎ 且,则. ‎ 所以点的轨迹方程是,其中,, ‎ ‎32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.‎ ‎(Ⅰ)求椭圆的方程; ‎ ‎(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线交 的长轴于点,求的取值范围;‎ ‎(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,若,试证明为定值,并求出这个定值. ‎ ‎【答案】解:(Ⅰ)由于,将代入椭圆方程得 ‎ 由题意知,即 又 ‎ 所以, 所以椭圆方程为 ‎ ‎(Ⅱ)由题意可知:=,=,设其中,将向量坐标代入并化简得:m(,因为, ‎ 所以,而,所以 ‎ ‎(3)由题意可知,l为椭圆的在p点处的切线,由导数法可求得,切线方程为: ‎ ‎,所以,而,代入中得 ‎ 为定值. ‎ ‎33.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.‎ ‎(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);‎ ‎(2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”;‎ ‎(3)求证:圆内的点都不是“C1—C2型点”.‎ ‎【答案】:(1)C1的左焦点为,过F的直线与C1交于,与C2交于,故C1的左焦点为“C1-C2型点”,且直线可以为; ‎ ‎(2)直线与C2有交点,则 ‎ ‎,若方程组有解,则必须; ‎ 直线与C2有交点,则 ‎ ‎,若方程组有解,则必须 ‎ 故直线至多与曲线C1和C2中的一条有交点,即原点不是“C1-C2型点”. ‎ ‎(3)显然过圆内一点的直线若与曲线C1有交点,则斜率必存在; ‎ 根据对称性,不妨设直线斜率存在且与曲线C2交于点,则 ‎ ‎ ‎ 直线与圆内部有交点,故 ‎ 化简得,............① ‎ 若直线与曲线C1有交点,则 ‎ ‎ ‎ ‎ ‎ 化简得,.....② ‎ 由①②得, ‎ 但此时,因为,即①式不成立; ‎ 当时,①式也不成立 ‎ 综上,直线若与圆内有交点,则不可能同时与曲线C1和C2有交点, ‎ 即圆内的点都不是“C1-C2型点” . ‎ ‎34.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))如图,在正方形中,为坐标原点,点的坐标为,点的坐标为.分别将线段和十等分,分点分别记为和,连结,过做轴的垂线与交于点.‎ ‎(1)求证:点都在同一条抛物线上,并求该抛物线的方程;‎ ‎(2)过点做直线与抛物线交于不同的两点,若与的面积比为,求直线的方程.‎ ‎【答案】解:(Ⅰ)依题意,过且与x轴垂直的直线方程为 ‎ ‎,直线的方程为 ‎ 设坐标为,由得:,即, ‎ 都在同一条抛物线上,且抛物线方程为 ‎ ‎(Ⅱ)依题意:直线的斜率存在,设直线的方程为 ‎ 由得 ‎ 此时,直线与抛物线恒有两个不同的交点 ‎ 设:,则 ‎ ‎ ‎ 又, ‎ 分别带入,解得 ‎ 直线的方程为,即或 ‎ ‎35.(2013年高考湖南卷(理))过抛物线的焦点F作斜率分别为的两条不同的直线,且,相交于点A,B,相交于点C,D.以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为.‎ ‎(I)若,证明;;‎ ‎(II)若点M到直线的距离的最小值为,求抛物线E的方程.‎ ‎【答案】解: (Ⅰ) ‎ ‎ ‎ ‎. ‎ ‎ ‎ 所以,成立. (证毕) ‎ ‎(Ⅱ) ‎ ‎ ‎ 则, ‎ ‎ ‎ ‎. ‎ ‎ ‎ ‎ ‎ ‎. ‎ ‎36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点 ‎(1)求椭圆的方程; (2)求面积取最大值时直线的方程.‎ x O y B l1‎ l2‎ P D A ‎(第21题图)‎ ‎【答案】解:(Ⅰ)由已知得到,且,所以椭圆的方程是; ‎ ‎(Ⅱ)因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦; ‎ 由,所以 ‎ ‎,所以 ‎ ‎, ‎ 当时等号成立,此时直线 ‎ ‎37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点,长轴在轴上,离心率,过左焦点作轴的垂线交椭圆于两点,.‎ ‎(1)求该椭圆的标准方程;‎ ‎(2)取垂直于轴的直线与椭圆相交于不同的两点,过作圆心为的圆,使椭圆上的其余点均在圆外.若,求圆的标准方程.‎ ‎【答案】‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎38.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))设椭圆的焦点在轴上 ‎(Ⅰ)若椭圆的焦距为1,求椭圆的方程;‎ ‎(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.‎ ‎【答案】解: (Ⅰ). ‎ ‎(Ⅱ) . ‎ 由. ‎ ‎ ‎ ‎ ‎ ‎ ‎ 所以动点P过定直线. ‎ ‎39.(2013年高考新课标1(理))已知圆:,圆:,动圆与外切并且与圆内切,圆心的轨迹为曲线 C.‎ ‎(Ⅰ)求C的方程;‎ ‎(Ⅱ)是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. ‎ ‎【答案】由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3. ‎ 设动圆的圆心为(,),半径为R.‎ ‎(Ⅰ)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4, ‎ 由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为. ‎ ‎(Ⅱ)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2, ‎ 当且仅当圆P的圆心为(2,0)时,R=2. ‎ ‎∴当圆P的半径最长时,其方程为, ‎ 当的倾斜角为时,则与轴重合,可得|AB|=. ‎ 当的倾斜角不为时,由≠R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),∴设:,由于圆M相切得,解得. ‎ 当=时,将代入并整理得,解得=,∴|AB|==. ‎ 当=-时,由图形的对称性可知|AB|=, ‎ 综上,|AB|=或|AB|=. ‎ ‎40.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为. ‎ ‎(Ⅰ) 求椭圆的方程; ‎ ‎(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若, 求k的值. ‎ ‎【答案】‎ ‎ ‎ ‎41.(2013年高考江西卷(理))如图,椭圆经过点离心率,直线的方程为.‎ ‎(1) 求椭圆的方程;‎ ‎(2) 是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.‎ ‎【答案】解:(1)由在椭圆上得, ① ‎ 依题设知,则 ② ‎ ‎②代入①解得. ‎ 故椭圆的方程为. ‎ ‎(2)方法一:由题意可设的斜率为, ‎ 则直线的方程为 ③ ‎ 代入椭圆方程并整理,得, ‎ 设,则有 ‎ ‎ ④ ‎ 在方程③中令得,的坐标为. ‎ 从而. ‎ 注意到共线,则有,即有. ‎ 所以 ‎ ‎ ⑤ ‎ ‎④代入⑤得, ‎ 又,所以.故存在常数符合题意. ‎ 方法二:设,则直线的方程为:, ‎ 令,求得, ‎ 从而直线的斜率为, ‎ 联立 ,得, ‎ 则直线的斜率为:,直线的斜率为:, ‎ 所以, ‎ 故存在常数符合题意. ‎ ‎42.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线 的两条切线,其中为切点.‎ ‎(Ⅰ) 求抛物线的方程;‎ ‎(Ⅱ) 当点为直线上的定点时,求直线的方程;‎ ‎(Ⅲ) 当点在直线上移动时,求的最小值.‎ ‎【答案】(Ⅰ) 依题意,设抛物线的方程为,由结合,解得. ‎ 所以抛物线的方程为. ‎ ‎(Ⅱ) 抛物线的方程为,即,求导得 ‎ 设,(其中),则切线的斜率分别为,, ‎ 所以切线的方程为,即,即 ‎ 同理可得切线的方程为 ‎ 因为切线均过点,所以, ‎ 所以为方程的两组解. ‎ 所以直线的方程为. ‎ ‎(Ⅲ) 由抛物线定义可知,, ‎ 所以 ‎ 联立方程,消去整理得 ‎ 由一元二次方程根与系数的关系可得, ‎ 所以 ‎ 又点在直线上,所以, ‎ 所以 ‎ 所以当时, 取得最小值,且最小值为. ‎ ‎43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))平面直角坐标系中,过椭圆的右焦点作直交于两点,为的中点,且的斜率为.‎ ‎(Ⅰ)求的方程;‎ ‎(Ⅱ)为上的两点,若四边形的对角线,求四边形面积的最大值.‎ ‎【答案】‎ ‎ ‎ ‎ ‎ ‎44.(2013年高考湖北卷(理))如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为,,,.记,和的面积分别为和.‎ ‎(I)当直线与轴重合时,若,求的值;‎ ‎(II)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.‎ 第21题图 ‎【答案】解:(I), ‎ 解得:(舍去小于1的根) ‎ ‎(II)设椭圆,,直线: ‎ ‎ ‎ 同理可得, ‎ 又和的的高相等 ‎ ‎ ‎ 如果存在非零实数使得,则有, ‎ 即:,解得 ‎ 当时,,存在这样的直线;当时,,不存在这样的直线. ‎ ‎45.(2013年高考北京卷(理))已知A、B、C是椭圆W:上的三个点,O是坐标原点.‎ ‎(I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;‎ ‎(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.‎ ‎【答案】解:(I)椭圆W:的右顶点B的坐标为(2,0).因为四边形OABC为菱形,所以AC与OB相互垂直平分. 所以可设A(1,),代入椭圆方程得,即. 所以菱形OABC的面积是. ‎ ‎(II)假设四边形OABC为菱形. 因为点B不是W的顶点,且直线AC不过原点,所以可设AC的方程为. ‎ 由消去并整理得. ‎ 设A,C,则,. ‎ 所以AC的中点为M(,). ‎ 因为M为AC和OB的交点,所以直线OB的斜率为. ‎ 因为,所以AC与OB不垂直. 所以OABC不是菱形,与假设矛盾. ‎ 所以当点B不是W的顶点时,四边形OABC不可能是菱形. ‎ ‎46.(2013年高考陕西卷(理))已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8. ‎ ‎(Ⅰ) 求动圆圆心的轨迹C的方程; ‎ ‎(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线与轨迹C交于不同的两点P, Q, 若x轴是 的角平分线, 证明直线过定点. ‎ ‎【答案】解:(Ⅰ) A(4,0),设圆心C ‎ ‎(Ⅱ) 点B(-1,0), . ‎ 直线PQ方程为: ‎ ‎ ‎ 所以,直线PQ过定点(1,0) ‎ ‎47.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))如图,抛物线,点在抛物线上,过作的切线,切点为(为原点时,重合于),切线的斜率为.‎ ‎(I)求的值;‎ ‎(II)当在上运动时,求线段中点的轨迹方程.‎ ‎【答案】‎ ‎ ‎ ‎ ‎ ‎48.(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))已知双曲线的左、右焦点分别为,离心率为直线与的两个交点间的距离为.‎ ‎(I)求;‎ ‎(II)设过的直线与的左、右两支分别相交于两点,且,证明:成等比数列.‎ ‎【答案】‎ ‎ ‎ ‎ ‎ ‎49.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小题满分6分.‎ 已知抛物线 的焦点为.‎ ‎(1)点满足.当点在抛物线上运动时,求动点的轨迹方程;‎ ‎(2)在轴上是否存在点,使得点关于直线的对称点在抛物线上?如果存在,求所有满足条件的点的坐标;如果不存在,请说明理由.‎ ‎【答案】(1)设动点的坐标为,点的坐标为,则, ‎ 因为的坐标为,所以, ‎ 由得. ‎ 即 解得 ‎ 代入,得到动点的轨迹方程为. ‎ ‎(2)设点的坐标为.点关于直线的对称点为, ‎ 则 解得 ‎ 若在上,将的坐标代入,得,即或. ‎ 所以存在满足题意的点,其坐标为和. ‎