- 752.31 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2008年普通高等学校招生全国统一考试(四川)
数 学(文史类)及详解详析
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3到8页。考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果事件A、B互斥,那么 球是表面积公式
如果事件A、B相互独立,那么 其中R表示球的半径
球的体积公式
如果事件A在一次试验中发生的概率是P,那么
n次独立重复试验中恰好发生k次的概率 其中R表示球的半径
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4} ,则CU(A∩B)=
(A){2,3} (B) {1,4,5} (C){4,5} (D){1,5}
2、函数的反函数是
(A) (B)
(C) (D)
3、 设平面向量,则=
(A)(7,3) (B)(7,7) (C)(1,7) (D)(1,3)
4、(tanx+cotx)cos2x=
(A)tanx (B)sinx (C)cosx (D)cotx
5、不等式的解集为
(A)(-1,2) (B)(-1,1) (C)(-2,1) (D)(-2,2)
6、将直线绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为
(A) (B) (C) (D)
7、△ABC的三个内角A、B、C的对边边长分别是 ,若 ,A=2B,则cosB=
(A) (B) (C) (D)
8、设M是球O的半径OP的中点,分别过M、O作垂直于OP的平面,截球面得到两个圆,则这两个圆的面积比值为
(A) (B) (C) (D)
9、定义在R上的函数满足:则
(A)13 (B) 2 (C) (D)
10、设直线,过平面外一点A且与、都成30°角的直线有且只有
(A)1条 (B)2条 (C)3条 (D)4条
11、已知双曲线的左右焦点分别为F1、F2 ,P为C的右支上一点,且,则△PF1F2 的面积等于
(A)24 (B)36 (C)48 (D)96
12、若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60°的菱形,则该棱柱的体积为
(A) (B) (C) (D)
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在题中横线上。
13、的展开式中的系数是 。
14、已知直线,圆,则C上各点到的距离的最小值是 。
15、从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法有 种。
16、设数列中,,,则通项 = 。
2008年普通高等学校招生全国统一考试(四川)
数 学(文史类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3到8页。考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题答题卡:
题号
1
2
3
4
5
6
7
8
9
10
11
12
得分
选项
二、填空题答题卡:
⒔ 。⒕ 。⒖ 。⒗ 。
三.解答题 共6个小题,共74分,解答时应写出必要的文字说明,证明过程或演算步骤.
得分
评卷人
17.(本小题满分12分)
求函数的最大值与最小值.
得分
评卷人
18.(本小题满分12分)
设进入某商场的每一位顾客购买甲商品的概率为0.5,购买乙商品的概率为0.6,且顾客购买甲商品与购买乙商品相互独立,各顾客之间购买商品是相互独立的.
(Ⅰ)求进入该商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入该商场的3位顾客中,至少有2位顾客既未购买甲种也未购买乙种商品的概率;
得分
评卷人
19.(本小题满分12分)
G
H
F
E
D
C
B
A
如图,面ABEF⊥面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥AD,BE∥AF,G、H分别是FA、FD的中点。
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C、D、E、F四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.
得分
评卷人
20.(本小题满分12分)
设x=1和x=2是函数的两个极值点.
(Ⅰ)求的值;
(Ⅱ)求的单调区间.
得分
评卷人
21.(本小题满分12分)
已知数列的前n项和
(Ⅰ)求;
(Ⅱ)证明:数列是一个等比数列。
(Ⅲ)求的通项公式。
得分
评卷人
22.(本小题满分14分)
设椭圆的左、右焦点分别是F1和F2 ,离心率,点F2到右准线的距离为.
(Ⅰ)求的值;
(Ⅱ)设M、N是右准线上两动点,满足
证明:当取最小值时,.
2008年普通高等学校招生全国统一考试(四川卷)
数 学(文科)及详解详析
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。全卷满分150分,考试时间120分钟。
考生注意事项:
1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动、用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写。在试题卷上作答无效。
4. 考试结束,监考员将试题卷和答题卡一并收回。
参考公式:
如果事件A、B互斥,那么 球的表面积公式
如果事件A、B相互独立,那么 其中R表示球的半径
球的体积公式
如果事件在一次实验中发生的概率是,那么
次独立重复实验中事件恰好发生次的概率 其中R表示球的半径
第Ⅰ卷
一.选择题:
1.设集合,则( B )
(A) (B) (C) (D)
【解】:∵ ∴
又∵ ∴ 故选B;
【考点】:此题重点考察集合的交集,补集的运算;
【突破】:画韦恩氏图,数形结合;
2.函数的反函数是( C )
(A) (B)
(C) (D)
【解】:∵由反解得 ∴ 从而淘汰(B)、(D)
又∵原函数定义域为 ∴反函数值域为 故选C;
【考点】:此题重点考察求反函数的方法,考察原函数与反函数的定义域与值域的互换性;
【突破】:反解得解析式,或利用原函数与反函数的定义域与值域的互换对选项进行淘汰;
3.设平面向量,则( A )
(A) (B) (C) (D)
【解】:∵ ∴
故选C;
【考点】:此题重点考察向量加减、数乘的坐标运算;
【突破】:准确应用向量的坐标运算公式是解题的关键;
4.( D )
(A) (B) (C) (D)
【解】:∵
故选D;
【点评】:此题重点考察各三角函数的关系;
【突破】:熟悉三角公式,化切为弦;以及注意;
5.不等式的解集为( A )
(A) (B) (C) (D)
【解】:∵ ∴ 即, ,
∴ 故选A;
【点评】:此题重点考察绝对值不等式的解法;
【突破】:准确进行不等式的转化去掉绝对值符号为解题的关键,可用公式法,平方法,特值验证淘汰法;
6.直线绕原点逆时针旋转,再向右平移1个单位,所得到的直线为( A )
(A) (B)
(C) (D)
【解】:∵直线绕原点逆时针旋转的直线为,从而淘汰(C),(D)
又∵将向右平移1个单位得,即 故选A;
【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;
【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;
7.的三内角的对边边长分别为,若,则( B )
(A) (B) (C) (D)
【解】:∵中 ∴∴ 故选B;
【点评】:此题重点考察解三角形,以及二倍角公式;
【突破】:应用正弦定理进行边角互化,利用三角公式进行角的统一,达到化简的目的;在解三角形中,利用正余弦定理进行边角转化是解题的基本方法,在三角函数的化简求值中常要重视角的统一,函数的统一,降次思想的应用。
8.设是球心的半径的中点,分别过作垂直于的平面,截球面得两个圆,则这两个圆的面积比值为:( D )
(A) (B) (C) (D)
【解】:设分别过作垂线于的面截球得三个圆的半径为,球半径为,
则:
∴ ∴这两个圆的面积比值为: 故选D
【点评】:此题重点考察球中截面圆半径,球半径之间的关系;
【突破】:画图数形结合,提高空间想象能力,利用勾股定理;
9.函数满足,若,则( C )
(A) (B) (C) (D)
【解】:∵且 ∴,,
,,,,
∴ ,∴ 故选C
【点评】:此题重点考察递推关系下的函数求值;
【突破】:此类题的解决方法一般是求出函数解析式后代值,或者得到函数的周期性求解;
10.设直线平面,过平面外一点与都成角的直线有且只有:( B )
(A)1条 (B)2条 (C)3条 (D)4条
【解】:如图,当时,直线满足条件;
又由图形的对称性,知当时,
直线满足条件; 故选B
【点评】:此题重点考察线线角,线面角的关系,以及空间想象能力,图形的对称性;
【突破】:数形结合,利用圆锥的母线与底面所成的交角不变画图,重视空间想象能力和图形的对称性;
11.已知双曲线的左右焦点分别为,为的右支上一点,且,则的面积等于( C )
(A) (B) (C) (D)
【解1】:∵双曲线中 ∴
∵ ∴
作边上的高,则 ∴
∴的面积为 故选C
【解2】:∵双曲线中 ∴
设, 则由得
又∵为的右支上一点 ∴ ∴
∴ 即
解得或(舍去)
∴
∴的面积为 故选B
【点评】:此题重点考察双曲线的第一定义,双曲线中与焦点,准线有关三角形问题;
【突破】:由题意准确画出图象,解法1利用数形结合,注意到三角形的特殊性;解法2利用待定系数法求点坐标,有较大的运算量;
12.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为的菱形,则该棱柱的体积等于( B )
(A) (B) (C) (D)
【解】:如图在三棱柱中,设,
由条件有,作于点,
则
∴ ∴
∴ 故选B
【点评】:此题重点考察立体几何中的最小角定理和柱体体积公式,同时考察空间想象能力;
【突破】:具有较强的空间想象能力,准确地画出图形是解决此题的前提,熟悉最小角定理并能准确应用是解决此题的关键;
第Ⅱ卷
二.填空题:本大题共4个小题,每小题4分,共16分。把答案填在题中横线上。
13.展开式中的系数为_______________。
【解】:∵展开式中项为
∴所求系数为 故填
【点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;
【突破】:利用组合思想写出项,从而求出系数;
14.已知直线与圆,则上各点到的距离的最小值为_____________。
【解】:如图可知:过原心作直线的垂线,则长即为所求;
∵的圆心为,半径为
点到直线的距离为
∴ 故上各点到的距离的最小值为
【点评】:此题重点考察圆的标准方程和点到直线的距离;
【突破】:数形结合,使用点到直线的距离距离公式。
15.从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________________种。
【解】:∵从10个同学中挑选4名参加某项公益活动有种不同挑选方法;
从甲、乙之外的8个同学中挑选4名参加某项公益活动有种不同挑选方法;
∴甲、乙中至少有1人参加,则不同的挑选方法共有种不同挑选方法 故填;
【考点】:此题重点考察组合的意义和组合数公式;
【突破】:从参加 “某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;
16.设数列中,,则通项 ___________。
【解】:∵ ∴,,
,,,,
将以上各式相加得:
故应填;
【考点】:此题重点考察由数列的递推公式求数列的通项公式;
【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法,迭代法等;
三.解答题:本大题共6个小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
求函数的最大值与最小值。
【解】:
由于函数在中的最大值为
最小值为
故当时取得最大值,当时取得最小值
【点评】:此题重点考察三角函数基本公式的变形,配方法,符合函数的值域及最值;
【突破】:利用倍角公式降幂,利用配方变为复合函数,重视复合函数中间变量的范围是关键;
18.(本小题满分12分)
设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的3位顾客中至少有2位顾客既未购买甲种也未购买乙种商品的概率。
【解】:(Ⅰ)记表示事件:进入商场的1位顾客购买甲种商品,
记表示事件:进入商场的1位顾客购买乙种商品,
记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,
(Ⅱ)记表示事件:进入商场的3位顾客中都未选购甲种商品,也未选购买乙种商品;
表示事件:进入商场的1位顾客未选购甲种商品,也未选购买乙种商品;
表示事件:进入商场的3位顾客中至少有2位顾客既未选购甲种商品,也未选选购乙种商品;
【点评】:此题重点考察相互独立事件有一个发生的概率;
【突破】:分清相互独立事件的概率求法;对于“至少”常从反面入手常可起到简化的作用;
19.(本小题满分12分)
如图,平面平面,四边形与都是直角梯形,
,,分别为的中点
(Ⅰ)证明:四边形是平行四边形;
(Ⅱ)四点是否共面?为什么?
(Ⅲ)设,证明:平面平面;
【解1】:(Ⅰ)由题意知,
所以
又,故
所以四边形是平行四边形。
(Ⅱ)四点共面。理由如下:
由,是的中点知,,所以
由(Ⅰ)知,所以,故共面。又点在直线上
所以四点共面。
(Ⅲ)连结,由,及知是正方形
故。由题设知两两垂直,故平面,
因此是在平面内的射影,根据三垂线定理,
又,所以平面
由(Ⅰ)知,所以平面。
由(Ⅱ)知平面,故平面,得平面平面
【解2】:由平面平面,,得平面,
以为坐标原点,射线为轴正半轴,建立如图所示的直角坐标系
(Ⅰ)设,则由题设得
所以
于是
又点不在直线上
所以四边形是平行四边形。
(Ⅱ)四点共面。理由如下:
由题设知,所以
又,故四点共面。
(Ⅲ)由得,所以
又,因此
即
又,所以平面
故由平面,得平面平面
【点评】:此题重点考察立体几何中直线与直线的位置关系,四点共面问题,面面垂直问题,考察了空间想象能力,几何逻辑推理能力,以及计算能力;
【突破】:熟悉几何公理化体系,准确推理,注意逻辑性是顺利进行解法1的关键;在解法2中,准确的建系,确定点坐标,熟悉向量的坐标表示,熟悉空间向量的计算在几何位置的证明,在有关线段,角的计算中的计算方法是解题的关键。
20.(本小题满分12分)
设和是函数的两个极值点。
(Ⅰ)求和的值;
(Ⅱ)求的单调区间
【解】:(Ⅰ)因为
由假设知:
解得
(Ⅱ)由(Ⅰ)知
当时,
当时,
因此的单调增区间是
的单调减区间是
【点评】:此题重点考察利用导数研究函数的极值点,单调性,最值问题;
【突破】:熟悉函数的求导公式,理解函数极值与导数、函数单调性与导数的关系;重视图象或示意图的辅助作用。
21.(本小题满分12分)
设数列的前项和为,
(Ⅰ)求
(Ⅱ)证明: 是等比数列;
(Ⅲ)求的通项公式
【解】:(Ⅰ)因为,所以
由知
得 ①
所以
(Ⅱ)由题设和①式知
所以是首项为2,公比为2的等比数列。
(Ⅲ)
【点评】:此题重点考察数列的递推公式,利用递推公式求数列的特定项,通项公式等;
【突破】:推移脚标两式相减是解决含有的递推公式的重要手段,使其转化为不含的递推公式,从而针对性的解决;在由递推公式求通项公式时应重视首项是否可以被吸收是易错点,同时注意利用题目设问的层层深入,前一问常为解决后一问的关键环节为求解下一问指明方向。
22.(本小题满分14分)
设椭圆的左右焦点分别为,离心率,点到右准线为的距离为
(Ⅰ)求的值;
(Ⅱ)设是上的两个动点,,
证明:当取最小值时,
【解】:因为,到的距离,所以由题设得
解得
由,得
(Ⅱ)由得,的方程为
故可设
由知知
得,所以
当且仅当时,上式取等号,此时
所以,
【点评】:此题重点考察椭圆基本量间的关系,进而求椭圆待定常数,考察向量与椭圆的综合应用;
【突破】:熟悉椭圆各基本量间的关系,数形结合,熟练进行向量的坐标运算,设而不求消元的思想在圆锥曲线问题中应灵活应用。