- 2.24 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2013年高考数学试题分类汇编——不等式
·一、选择题
1、(2010上海文数)15.满足线性约束条件的目标函数的最大值是 ( )
(A)1. (B). (C)2. (D)3.
解析:当直线过点B(1,1)时,z最大值为2
2、(2010浙江理数)(7)若实数,满足不等式组且的最大值为9,则实数
(A) (B) (C)1 (D)2
解析:将最大值转化为y轴上的截距,将m等价为斜率的倒数,数形结合可知答案选C,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题
3、(2010全国卷2理数)(5)不等式的解集为
(A) (B)
(C) (D)
【答案】C
【命题意图】本试题主要考察分式不等式与高次不等式的解法.
【解析】利用数轴穿根法解得-2<x<1或x>3,故选C
4、(2010全国卷2文数)(5)若变量x,y满足约束条件 则z=2x+y的最大值为
(A)1 (B)2 (C)3 (D)4
【解析】C:本题考查了线性规划的知识。
∵ 作出可行域,作出目标函数线,可得直线与 与的交点为最优解点,∴即为(1,1),当时
5、(2010全国卷2文数)(2)不等式<0的解集为
(A) (B) (C) (D)
【解析】A :本题考查了不等式的解法
∵ ,∴ ,故选A
6、(2010江西理数)3.不等式 的解集是( )
A. B. C. D.
【答案】 A
【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.,解得A。
或者选择x=1和x=-1,两个检验进行排除。
7、(2010安徽文数)(8)设x,y满足约束条件则目标函数z=x+y的最大值是
(A)3 (B) 4 (C) 6 (D)8
8.C
【解析】不等式表示的区域是一个三角形,3个顶点是,目标函数
在取最大值6。
【规律总结】线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则区域端点的值是目标函数取得最大或最小值,求出直线交点坐标代入目标函数即可求出最大值.
(2010重庆文数)(7)设变量满足约束条件则的最大值为
(A)0 (B)2
(C)4 (D)6
解析:不等式组表示的平面区域如图所示,
当直线过点、B时,在y轴上截距最小,z最大
由B(2,2)知4
8、
解析:将最大值转化为y轴上的截距,可知答案选A,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题
9、(2010重庆理数)(7)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是
A. 3 B. 4 C. D.
解析:考察均值不等式
,整理得
即,又,
10、(2010重庆理数)(4)设变量x,y满足约束条件,则z=2x+y的最大值为
A.—2 B. 4 C. 6 D. 8
解析:不等式组表示的平面区域如图所示
当直线过点B(3,0)的时候,z取得最大值6
11、(2010北京理数)(7)设不等式组 表示的平面区域为D,若指数函数y=的图像上存在区域D上的点,则a 的取值范围是
(A)(1,3] (B )[2,3] (C ) (1,2] (D )[ 3, ]
答案:A
12、(2010四川理数)(12)设,则的最
小值是
(A)2 (B)4 (C) (D)5
解析:
=
=
≥0+2+2=4
当且仅当a-5c=0,ab=1,a(a-b)=1时等号成立
如取a=,b=,c=满足条件.
答案:B
y
0
x
70
48
80
70
(15,55)
13、(2010四川理数)(7)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为
(A)甲车间加工原料10箱,乙车间加工原料60箱
(B)甲车间加工原料15箱,乙车间加工原料55箱
(C)甲车间加工原料18箱,乙车间加工原料50箱
(D)甲车间加工原料40箱,乙车间加工原料30箱
解析:设甲车间加工原料x箱,乙车间加工原料y箱
则
目标函数z=280x+300y
结合图象可得:当x=15,y=55时z最大
本题也可以将答案逐项代入检验.
答案:B
14、(2010天津文数)(2)设变量x,y满足约束条件则目标函数z=4x+2y的最大值为
(A)12 (B)10 (C)8 (D)2
【答案】B
【解析】本题主要考查目标函数最值的求法,属于容易题,做出可行域,如图由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时z取得最大值10.
(2010福建文数)
15、(2010全国卷1文数)(10)设则
(A)(B) (C) (D)
10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.
【解析1】 a=2=, b=In2=,而,所以a0,b>0,称为a,b的调和平均数。如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径做半圆。过点C作AB的垂线交半圆于D。连结OD,AD,BD。过点C作OD的垂线,垂足为E。则图中线段OD的长度是a,b的算术平均数,线段 的长度是a,b的几何平均数,线段 的长度是a,b的调和平均数。
15.【答案】CD DE
【解析】在Rt△ADB中DC为高,则由射影定理可得,故,即CD长度为a,b的几何平均数,将OC=代入可得故,所以ED=OD-OE=,故DE的长度为a,b的调和平均数.
37、(2010江苏卷)12、设实数x,y满足3≤≤8,4≤≤9,则的最大值是 。。
[解析] 考查不等式的基本性质,等价转化思想。
,,,的最大值是27。
三、解答题
38、(2010广东理数)19.(本小题满分12分)
某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.
如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?
解:设该儿童分别预订个单位的午餐和晚餐,共花费元,则。
可行域为
12 x+8 y ≥64
6 x+6 y ≥42
6 x+10 y ≥54
x≥0, x∈N
y≥0, y∈N
即
3 x+2 y ≥16
x+ y ≥7
3 x+5 y ≥27
x≥0, x∈N
y≥0, y∈N
作出可行域如图所示:
经试验发现,当x=4,y=3 时,花费最少,为=2.5×4+4×3=22元.
39、(2010广东文数)19.(本题满分12分)
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.
如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
解:设为该儿童分别预订个单位的午餐和个单位的晚餐,设费用为F,则F,由题意知:
画出可行域:
变换目标函数:
40、(2010湖北理数)15.设a>0,b>0,称为a,b的调和平均数。如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径做半圆。过点C作AB的垂线交半圆于D。连结OD,AD,BD。过点C作OD的垂线,垂足为E。则图中线段OD的长度是a,b的算术平均数,线段 的长度是a,b的几何平均数,线段 的长度是a,b的调和平均数。
15.【答案】CD DE
【解析】在Rt△ADB中DC为高,则由射影定理可得,故,即CD长度为a,b的几何平均数,将OC=代入可得故,所以ED=OD-OE=,故DE的长度为a,b的调和平均数.
相关文档
- 高考题和高考模拟题数学文——专题2021-05-1418页
- 2014年版高考化学二轮分类练习题目2021-05-143页
- 三年经典2011全国各地高考物理试题2021-05-1414页
- 近五年地理高考试题汇编大气垂直分2021-05-144页
- 高考题语文试题分类详解诗词鉴赏2021-05-1410页
- 六年高考及模拟题 生物的生殖和发2021-05-1465页
- 2020-2021年高考生物一轮复习知识2021-05-148页
- 高考真题分类汇编化学专题2物质的2021-05-1410页
- 北京市高考化学一模题有机推断汇编2021-05-1415页
- 高考英语复习往年六年高考题荟萃汇2021-05-1445页