- 79.00 KB
- 2021-06-09 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时作业(十四)
1.双曲线(α为参数)的两焦点坐标是( )
A.(0,-4),(0,4) B.(-4,0),(4,0)
C.(0,-),(0,) D.(-,0),(,0)
答案 A
解析 双曲线方程化为-=1,所以c2=36+12=48,c=4,且焦点在y轴上,故选A.
2.双曲线C:(φ为参数)的一个焦点为( )
A.(3,0) B.(4,0)
C.(5,0) D.(0,5)
答案 C
解析 由得
于是()2-()2=sec2φ-tan2φ=1,
即双曲线方程为-=1,
焦点为F1(-5,0),F2(5,0).故选C.
3.抛物线y2=2x的参数方程为(t为参数)( )
A. B.
C. D.
答案 D
解析 由抛物线y2=2x,令x=t,则y2=2t,所以参数方程为(t为参数).
4.与普通方程x2+y-1=0等价的参数方程(t,φ,θ为参数)是( )
A. B.
C. D.
答案 B
7
解析 ∵方程x2+y-1=0中的x∈R,而选项A中,x∈[-1,1],选项C中x∈[0,+∞),选项D中x∈[-1,1],故选B.
5.点M0(0,1)到双曲线x2-y2=1的最小距离(即双曲线上任一点M到点M0距离的最小值)为( )
A.1 B.
C. D.2
答案 B
解析 把双曲线方程化为参数方程
设双曲线上动点M(secθ,tanθ),则
|M0M|2=sec2θ+(tanθ-1)2
=(tan2θ+1)+(tan2θ-2tanθ+1)
=2tan2θ-2tanθ+2=2(tanθ-)2+.
当tanθ-=0时,|M0M|2取得最小值,此时有|M0M|=,即M0点到双曲线的最小距离为.
6.把双曲线的普通方程-=1化为参数方程是________.
答案 (φ为参数)
解析 由已知双曲线的普通方程,设=,=tanφ,即得其参数方程为(φ为参数).
7.抛物线(m为参数)的准线方程是________.
答案 y=1
解析 由已知抛物线的参数方程,消去参数m,得抛物线的普通方程为x2=-4y,则p=2,=1,抛物线的准线方程是y=1.
8.已知双曲线的参数方程是(φ为参数),点P在双曲线上且对应的参数φ=,则直线OP的斜率为________.
7
答案 -
解析 把φ=代入双曲线的参数方程,得点P的坐标为(-,1),则直线OP的斜率为k=-.
9.已知双曲线的参数方程为(θ为参数),则双曲线的离心率是________.
答案
解析 由已知双曲线的参数方程,知双曲线的焦点在y轴上,且a=4,b=2,则c==2,离心率e==.
10.与双曲线-=1有相同焦点,且经过点(3,2)的双曲线参数方程为________.
答案 (θ为参数)
解析 设所求双曲线方程为-=1(-4<λ<16),又∵点(3,2)在双曲线上,
则-=1,∴λ=4或λ=-14(舍去),
∴所求双曲线的标准方程为-=1.
双曲线的参数方程为(θ为参数).
11.参数方程(θ为参数)表示的曲线的普通方程是________.
答案 y2=x+1(-1≤x≤1)
解析 由参数方程,有
y2=(sinθ+cosθ)2=1+2sinθcosθ=1+sin2θ,
将x=sin2θ代入,得y2=x+1.
又-1≤sin2θ≤1,则此参数方程表法的曲线的普通方程是y2=x+1(-1≤x≤1).
12.(2015·广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=-2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为________.
答案 (2,-4)
7
解析 曲线C1的直角坐标方程为x+y=-2,曲线C2的普通方程为y2=8x,由得所以C1与C2交点的直角坐标为(2,-4).
13.曲线(α为参数)与曲线(β为参数)的离心率分别为e1和e2,求e1+e2的最小值.
解析 将两个参数方程化为普通方程,则可得:
-=1与-=1,
其离心率分别为:
e1=,e2=,
故e1+e2
=+
=·
≥·=2.
14.如图所示,已知点M是椭圆+=1(a>b>0)上在第一象限的点,A(a,0)和B(0,b)的椭圆的两个顶点,O为原点,求四边形MAOB的面积的最大值.
解析 点M是椭圆+=1(a>b>0)上在第一象限的点,由于椭圆+=1的参数方程为(φ为参数),故可设M(acosφ,bsinφ),其中0<φ<,因此,S四边形MAOB=S△MAO+S△MOB=OA·yM+OB·xM=ab(sinφ+cosφ)=absin(φ+).
所以,当φ=时,四边形MAOB的面积有最大值,最大值为ab.
15.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),
7
它与曲线C:(y-2)2-x2=1交于A,B两点.
(1)求|AB|的长;
(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为(2,),求点P到线段AB中点M的距离.
解析 (1)将直线l的参数方程(t为参数),代入(y-2)2-x2=1,得t2+t-5=0.
∴t1+t2=-,t1t2=-.
∴|AB|=|t1-t2|==.
(2)P点直角坐标为(-2,2),
线段AB中点对应的参数值为,
∴点P到线段AB中点M的距离为||=.
1.曲线C:(φ为参数)的一个焦点为( )
A.(3,0) B.(4,0)
C.(5,0) D.(0,5)
答案 C
解析 由sec2φ=1+tan2φ,得-=1,方程的曲线为双曲线,由a2=9,b2=16,得c2=25,∴焦点坐标为(5,0)或(-5,0),故选C.
2.已知圆C:(x-)2+(y-tanθ)2=1,则圆C的圆心所在的曲线是( )
A.椭圆 B.双曲线
C.抛物线 D.圆
答案 B
解析 设圆C的圆心坐标为(m,n),则
①2-②2得m2-n2=1,
方程m2-n2=1表示的图形是等轴双曲线.故选B.
3.已知椭圆+=1和直线l:x-2y+c=0有公共点,
7
则实数c的取值范围是________.
答案 [-4,4]
解析 设M(2cosθ,sinθ),θ∈[0,2π)是椭圆和直线的公共点,则有2cosθ-2sinθ+c=0,所以c=2sinθ-2cosθ=4sin(θ-)∈[-4,4].
4.(2016·深圳高二检测)在直角坐标系中,已知直线l:(s为参数)与曲线C:(t为参数)相交于A,B两点,则|AB|=________.
答案
解析 直线l:(s为参数)的普通方程为y=3-x,曲线C:(t为参数)的普通方程为y=(x-3)2,依题意,得(x-3)2=3-x,解得x1=3,y1=0;x2=2,y2=1,所以坐标为A(3,0),B(2,1),则|AB|=.
5.在平面直角坐标系xOy中,曲线C1的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆,已知曲线C1上的点M(1,)对应的参数φ=,射线θ=与曲线C2交于点D(1,).
(1)求曲线C1,C2的方程;
(2)若点A(ρ1,θ),B(ρ2,θ+)在曲线C1上,求+的值.
解析 (1)方法一:将M(1,)及对应的参数φ=代入得
即所以曲线C1的方程为(φ为参数)化为普通方程为+y2=1.
设圆C2的半径为R,由题意得圆C2的方程为ρ=2Rcosθ,
将点D(1,)代入ρ=2Rcosθ得1=2Rcos,解得R=1,
所以曲线C2的方程为ρ=2cosθ.
方法二:将点M(1,)及对应的参数φ=代入得
解得故曲线C1的方程为+y2=1.
由题意设圆C2的半径为R,则方程为(x-R)2+y2=R2,
7
由D(1,)化直角坐标为(,)代入(x-R)2+y2=R2得R=1,
故圆C2的方程为(x-1)2+y2=1.
(2)因为点A(ρ1,θ),B(ρ2,θ+)在曲线C1上,所以+ρ12sin2θ=1,+ρ22sin2(θ+)=1,即+ρ22cos2θ=1,
所以+=(+sin2θ)+(+cos2θ)=.
7
相关文档
- 2021届高考数学一轮总复习第二章函2021-06-096页
- 2020-2021学年北师大版数学选修2-22021-06-0910页
- 2020-2021学年人教A版数学选修2-12021-06-0911页
- 【数学】2020届一轮复习人教版(理)第2021-06-096页
- 高中数学第一章解三角形1-2-2高度2021-06-098页
- 人教版高三数学总复习课时作业232021-06-0910页
- 【数学】2020届一轮复习北师大版算2021-06-0910页
- 2020届二轮复习直线与平面平行课时2021-06-0918页
- 【数学】2020届一轮复习人教B版 2021-06-097页
- 2020-2021学年人教A版数学选修2-22021-06-0910页