- 3.15 MB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
www.ks5u.com
宜宾市普通高中2017级高三第二次诊断测试
理科数学
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.
1.设是虚数单位,则( )
A. B. C. D.
【答案】A
【解析】
【分析】
利用复数的乘法运算可求得结果.
【详解】由复数的乘法法则得.
故选:A.
【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.
2.已知集合,,则( )
A. B. C. D.
【答案】A
【解析】
【分析】
求出集合,利用交集的定义可得出集合.
【详解】,,因此,.
故选:A.
【点睛】本题考查交集的运算,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题.
3.年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月
- 27 -
日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是( )
A. 月下旬新增确诊人数呈波动下降趋势
B. 随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数
C. 月日至月日新增确诊人数波动最大
D. 我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值
【答案】D
【解析】
【分析】
根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论.
【详解】对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确;
对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确;
对于C选项,由图象可知,月日至月日新增确诊人数波动最大,C选项正确;
对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误.
故选:D.
【点睛】本题考查统计图表的应用,考查数据处理能力,属于基础题.
4.已知双曲线一条渐近线方程为,则双曲线的离心率为( )
A. B. C. D.
【答案】B
- 27 -
【解析】
【分析】
由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.
【详解】双曲线的渐近线方程为,由题意可得,
因此,该双曲线的离心率为.
故选:B.
【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.
5.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是( )
A. B. C. D.
- 27 -
【答案】C
【解析】
【分析】
列出循环的每一步,可得出输出的的值.
【详解】,输入,,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数不成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,成立,跳出循环,输出的值为.
故选:C.
【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.
6.在中,内角的平分线交边于点,,,,则的面积是( )
A. B. C. D.
【答案】B
【解析】
【分析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.
【详解】为的角平分线,则.
,则,
,
- 27 -
在中,由正弦定理得,即,①
在中,由正弦定理得,即,②
①②得,解得,,
由余弦定理得,,
因此,的面积为.
故选:B.
【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.
7.的展开式中的系数为( )
A. B. C. D.
【答案】C
【解析】
由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.
点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.
8.定义在上的函数与其导函数的图象如图所示,设为坐标原点,、、、四点的横坐标依次为、、、,则函数的单调递减区间是( )
- 27 -
A. B. C. D.
【答案】B
【解析】
【分析】
先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.
【详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;
若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交点,合乎题意.
对函数求导得,由得,
由图象可知,满足不等式的的取值范围是,
- 27 -
因此,函数的单调递减区间为.
故选:B.
【点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.
9.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是( )
A. B. C. D.
【答案】D
【解析】
【分析】
利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.
【详解】在函数的解析式中,令,可得,则点,直线的方程为,
- 27 -
矩形中位于曲线上方区域的面积为,
矩形的面积为,
由几何概型的概率公式得,所以,.
故选:D.
【点睛】本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.
10.若函数满足,且,则的最小值是( )
A. B. C. D.
【答案】A
【解析】
【分析】
由推导出,且,将所求代数式变形为,利用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.
【详解】函数满足,,即,
,,,即,
,则,
由基本不等式得,当且仅当时,等号成立.
,
由于函数在区间上为增函数,
- 27 -
所以,当时,取得最小值.
故选:A.
【点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.
11.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是( )
A. B. C. D.
【答案】C
【解析】
【分析】
求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.
【详解】如下图所示:
设点关于直线对称点为点,
- 27 -
则,整理得,解得,即点,
所以,圆关于直线的对称圆的方程为,
设点,则,
当时,取最小值,因此,.
故选:C.
【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.
12.若函数有且仅有一个零点,则实数的值为( )
A. B. C. D.
【答案】D
【解析】
【分析】
推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.
【详解】,
则,
,
,所以,函数的图象关于直线对称.
若函数的零点不为,则该函数的零点必成对出现,不合题意.
所以,,即,解得或.
①当时,令,得
- 27 -
,作出函数与函数的图象如下图所示:
此时,函数与函数的图象有三个交点,不合乎题意;
②当时,,,当且仅当时,等号成立,则函数有且只有一个零点.
综上所述,.
故选:D.
【点睛】本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.
二、填空题:本大题共4个小题,每小题5分,共20分.
13.已知,则__________.
【答案】
【解析】
解:由题意可知: .
14.已知为等比数列,是它的前项和.若,且与的等差中项为,则__________.
- 27 -
【答案】
【解析】
【分析】
设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.
【详解】由等比数列的性质可得,,
由于与的等差中项为,则,则,,
,,,
因此,.
故答案为:.
【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.
15.在中,已知,,是边的垂直平分线上的一点,则__________.
【答案】
【解析】
【分析】
作出图形,设点为线段的中点,可得出且,进而可计算出的值.
【详解】设点为线段的中点,则,,
- 27 -
,
故答案为:.
【点睛】本题考查平面向量数量积的计算,涉及平面向量数量积运算律的应用,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.
16.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述:
①平面;
②四点、、、可能共面;
③若,则平面平面;
④平面与平面可能垂直.其中正确的是__________.
- 27 -
【答案】①③
【解析】
【分析】
连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论.
【详解】对于命题①,连接、交于点,取的中点、,连接、,如下图所示:
则且,四边形是矩形,且,为的中点,
为的中点,且,且,
四边形为平行四边形,,即,
平面,平面,平面,命题①正确;
对于命题②,,平面,平面,平面,
若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,
则,但四边形为梯形且、为两腰,与相交,矛盾.
所以,命题②错误;
对于命题③,连接、,设,则,
- 27 -
在中,,,则为等腰直角三角形,
且,,,且,
由余弦定理得,,
,又,,平面,
平面,,
,、为平面内的两条相交直线,所以,平面,
平面,平面平面,命题③正确;
对于命题④,假设平面与平面垂直,过点在平面内作,
平面平面,平面平面,,平面,
平面,
平面,,
,,,,,
又,平面,平面,
,平面,平面,.
,,显然与不垂直,命题④错误.
故答案为:①③.
- 27 -
【点睛】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
17.为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、、、、分组,绘成频率分布直方图如图:
(1)分别求出所抽取的人中得分落在组和内的人数;
- 27 -
(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.
【答案】(1)所抽取的人中得分落在组和内的人数分别为人、人;(2)分布列见解析,.
【解析】
【分析】
(1)将分别乘以区间、对应的矩形面积可得出结果;
(2)由题可知,随机变量的可能取值为、、,利用超几何分布概率公式计算出随机变量在不同取值下的概率,可得出随机变量的分布列,并由此计算出随机变量的数学期望值.
【详解】(1)由题意知,所抽取的人中得分落在组的人数有(人),得分落在组的人数有(人).
因此,所抽取的人中得分落在组的人数有人,得分落在组的人数有人;
(2)由题意可知,随机变量的所有可能取值为、、,
,,,
所以,随机变量的分布列为:
所以,随机变量的期望为.
【点睛】本题考查利用频率分布直方图计算频数,同时也考查了离散型随机变量分布列与数学期望的求解,考查计算能力,属于基础题.
18.已知数列满足.
(1)求数列的通项公式;
- 27 -
(2)设数列的前项和为,证明:.
【答案】(1);(2)见解析.
【解析】
【分析】
(1)令,,利用可求得数列的通项公式,由此可得出数列的通项公式;
(2)求得,利用裂项相消法求得,进而可得出结论.
【详解】(1)令,,
当时,;
当时,,则,故;
(2),
.
【点睛】本题考查利用求通项,同时也考查了裂项相消法求和,考查计算能力与推理能力,属于基础题.
19.将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.
- 27 -
(1)求证:平面;
(2)求二面角的正弦值.
【答案】(1)见解析;(2).
【解析】
【分析】
(1)取的中点,连接、,连接,证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;
(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得二面角的余弦值,进而可求得其正弦值.
【详解】(1)取中点,连接、、,
且,四边形为平行四边形,且,
、分别为、中点,且,
则四边形为平行四边形,且,
且,且,
所以,四边形为平行四边形,且,
四边形为平行四边形,,
平面,平面,平面;
- 27 -
(2)以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,
,,,
设平面的法向量为,
由,得,取,则,,,
设平面的法向量为,
由,得,取,则,,,
,,
因此,二面角的正弦值为.
【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.
- 27 -
20.已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.
(1)求椭圆的标准方程;
(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.
【答案】(1);(2)见解析.
【解析】
【分析】
(1)在中,计算出的值,可得出的值,进而可得出的值,由此可得出椭圆的标准方程;
(2)设点、,设直线的方程为,将该直线方程与椭圆方程联立,列出韦达定理,根据已知条件得出,利用韦达定理和斜率公式化简得出与所满足的关系式,代入直线的方程,即可得出直线所过定点的坐标.
【详解】(1)在中,,,,
,,,,
因此,椭圆的标准方程为;
(2)由题不妨设,设点,
联立,消去化简得,
且,,
,,,
- 27 -
∴代入,化简得,
化简得,
,,,
直线,因此,直线过定点.
【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中直线过定点的问题,考查计算能力,属于中等题.
21.已知函数,.
(1)判断函数在区间上的零点的个数;
(2)记函数在区间上的两个极值点分别为、,求证:.
【答案】(1);(2)见解析.
【解析】
【分析】
(1)利用导数分析函数在区间上的单调性与极值,结合零点存在定理可得出结论;
(2)设函数的极大值点和极小值点分别为、,由(1)知,,且满足,,于是得出,由得,利用正切函数的单调性推导出,再利用正弦函数的单调性可得出结论.
【详解】(1),,
- 27 -
,当时,,,,则函数在上单调递增;
当时,,,,则函数在上单调递减;
当时,,,,则函数在上单调递增.
,,,,.
所以,函数在与不存在零点,在区间和上各存在一个零点.
综上所述,函数在区间上的零点的个数为;
(2),.
由(1)得,在区间与上存在零点,
所以,函数在区间与上各存在一个极值点、,且,,
且满足即,,
,
- 27 -
又,即,,
,,,
由在上单调递增,得,
再由在上单调递减,得
,即.
【点睛】本题考查利用导数研究函数的零点个数问题,同时也考查了利用导数证明不等式,考查分析问题和解决问题的能力,属于难题.
22.在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.
(1)求直角坐标方程与点的直角坐标;
(2)求证:.
【答案】(1),;(2)见解析.
【解析】
【分析】
(1)将曲线的极坐标方程变形为,再由可将曲线的极坐标方程化为直角坐标方程,将直线的方程与曲线的方程联立,求出点、的坐标,即可得出线段的中点的坐标;
(2)求得,写出直线的参数方程,将直线的参数方程与曲线
- 27 -
的普通方程联立,利用韦达定理求得的值,进而可得出结论.
【详解】(1)曲线的极坐标方程可化为,即,
将代入曲线的方程得,
所以,曲线的直角坐标方程为.
将直线的极坐标方程化为普通方程得,
联立,得或,则点、,
因此,线段的中点为;
(2)由(1)得,,
易知的垂直平分线的参数方程为(为参数),
代入的普通方程得,,
因此,.
【点睛】本题考查曲线的极坐标方程与普通方程之间的转化,同时也考查了直线参数几何意义的应用,涉及韦达定理的应用,考查计算能力,属于中等题.
23.已知函数.
(1)求不等式的解集;
(2)若存在实数,使得不等式成立,求实数的取值范围.
【答案】(1);(2).
- 27 -
【解析】
【分析】
(1)将函数的解析式表示为分段函数,然后分、、三段求解不等式,综合可得出不等式的解集;
(2)求出函数的最大值,由题意得出,解此不等式即可得出实数的取值范围.
【详解】.
(1)当时,由,解得,此时;
当时,由,解得,此时;
当时,由,解得,此时.
综上所述,不等式的解集;
(2)当时,函数单调递增,则;
当时,函数单调递减,则,即;
当时,函数单调递减,则.
综上所述,函数的最大值为,
由题知,,解得.
因此,实数的取值范围是.
【点睛】本题考查含绝对值不等式的求解,同时也考查了绝对值不等式中的参数问题,考查分类讨论思想的应用,考查运算求解能力,属于中等题.
- 27 -
- 27 -
相关文档
- 四川省宜宾市第四中学校2019-20202021-06-119页
- 数学文卷·2018届四川省宜宾市高三2021-06-119页
- 数学文卷·2018届四川省宜宾市南溪2021-06-1010页
- 四川省宜宾市叙州区二中2020届高三2021-06-1012页
- 四川省宜宾市叙州区第一中学校20202021-06-1013页
- 四川省宜宾市叙州区第一中学校20202021-06-109页
- 2018-2019学年四川省宜宾市南溪区2021-06-1010页
- 四川省宜宾市第四中学校2020届高三2021-06-1011页
- 四川省宜宾市叙州区第一中学校20202021-06-1011页
- 2018-2019学年四川省宜宾市第四中2021-06-1016页