- 330.00 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2.4.2平面向量数量积的坐标表示、模、夹角
教学目的:
1.掌握平面向量数量积运算规律;
2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;
3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.
教学重点:平面向量数量积及运算规律.
教学难点:平面向量数量积的应用
教学过程:
一、复习引入:
1.平面向量数量积(内积)的定义:
2.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量.
1° e×a = a×e =|a|cosq; 2° a^b Û a×b = 0
3° 当a与b同向时,a×b = |a||b|;当a与b反向时,a×b = -|a||b|. 特别的a×a = |a|2或
4°cosq = ; 5°|a×b| ≤ |a||b|
3.练习:
(1)已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( )
A.60° B.30° C.135° D.45°
(2)已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为( )
A.2 B.2 C.6 D.12
二、讲解新课:
探究:已知两个非零向量,,怎样用和的坐标表示?.
1、平面两向量数量积的坐标表示
两个向量的数量积等于它们对应坐标的乘积的和.即
2. 平面内两点间的距离公式
(1)设,则或.
(2)如果表示向量的有向线段的起点和终点的坐标分别为、,
那么(平面内两点间的距离公式)
3. 向量垂直的判定
设,,则
4. 两向量夹角的余弦()
cosq =
二、讲解范例:
例1 已知A(1, 2),B(2, 3),C(-2, 5),试判断△ABC的形状,并给出证明.
例2 设a = (5, -7),b = (-6, -4),求a·b及a、b间的夹角θ(精确到1o)
分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ的范围确定其值.
例3 已知a=(1,),b=(+1,-1),则a与b的夹角是多少?
分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ的范围确定其值.
解:由a=(1,),b=(+1,-1)
有a·b=+1+(-1)=4,|a|=2,|b|=2.
记a与b的夹角为θ,则cosθ= 又∵0≤θ≤π,∴θ=
评述:已知三角形函数值求角时,应注重角的范围的确定.
三、课堂练习:1、P107面1、2、3题
2、已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x= .
四、小结: 1、
2、平面内两点间的距离公式
3、向量垂直的判定:
设,,则
五、课后作业:《习案》作业二十四。
思考:
1、如图,以原点和A(5, 2)为顶点作等腰直角△OAB,使ÐB = 90°,求点B和向量的坐标.
解:设B点坐标(x, y),则= (x, y),= (x-5, y-2)
∵^ ∴x(x-5) + y(y-2) = 0即:x2 + y2 -5x - 2y = 0
又∵|| = || ∴x2 + y2 = (x-5)2 + (y-2)2即:10x + 4y = 29
由
∴B点坐标或;=或
2 在△ABC中,=(2, 3),=(1, k),且△ABC的一个内角为直角,求k值.
解:当A = 90°时,×= 0,∴2×1 +3×k = 0 ∴k =
当B = 90°时,×= 0,=-= (1-2, k-3) = (-1, k-3)
∴2×(-1) +3×(k-3) = 0 ∴k =
当C = 90°时,×= 0,∴-1 + k(k-3) = 0 ∴k =
相关文档
- 高中数学必修4教案:1_备课资料(3_1_12021-06-152页
- 【新教材】2020-2021学年高中人教A2021-06-1529页
- 高一数学(人教A版)必修4能力提升:2-4-2021-06-125页
- 高中数学必修4教案:3_示范教案(2_2_22021-06-126页
- 高中数学必修4教案:4_备课资料(2_2_32021-06-113页
- 高中数学必修4教案:10_示范教案(2_5_2021-06-115页
- 高一数学(人教A版)必修4能力提升:2-4-2021-06-115页
- 高中数学必修4教案:10_示范教案(1_6 2021-06-1111页
- 高中数学必修4教案任意角2021-06-1180页
- 高中数学必修4教案:2_2_1向量加法运2021-06-115页