- 160.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2讲 三角恒等变换与解三角形
专题强化训练
1.已知sin=cos,则cos 2α=( )
A.1 B.-1
C. D.0
解析:选D.因为sin=cos,所以cos α-sin α=cos α-sin α,即sin α=-cos α,所以tan α==-1,所以cos 2α=cos2α-sin2α===0.
2.(2018·高考全国卷Ⅰ)已知函数f(x)=2cos2x-sin2x+2,则( )
A.f(x)的最小正周期为π,最大值为3
B.f(x)的最小正周期为π,最大值为4
C.f(x)的最小正周期为2π,最大值为3
D.f(x)的最小正周期为2π,最大值为4
解析:选B.易知f(x)=2cos2x-sin2x+2=3cos2x+1=(2cos2x-1)++1=cos 2x+,则f(x)的最小正周期为π,当x=kπ(k∈Z)时,f(x)取得最大值,最大值为4.
3.(2019·台州市高考一模)在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=1,2b-c=2acos C,sin C=,则△ABC的面积为( )
A. B.
C.或 D.或
解析:选C.因为2b-c=2acos C,
所以由正弦定理可得2sin B- sin C=2sin Acos C,
所以2sin(A+C)-sin C=2sin Acos C,
所以2cos Asin C=sin C,
所以cos A=,所以A=30°,
因为sin C=,所以C=60°或120°.
- 8 -
A=30°,C=60°,B=90°,a=1,所以△ABC的面积为×1×2×=,A=30°,C=120°,B=30°,a=1,所以△ABC的面积为×1×1×=,故选C.
4.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,若S△ABC=2,a+b=6,=2cos C,则c=( )
A.2 B.2
C.4 D.3
解析:选B.因为===1,所以2cos C=1,所以C=.又S△ABC=2,则absin C=2,所以ab=8.因为a+b=6,所以c2=a2+b2-2abcos C=(a+b)2-2ab-ab=(a+b)2-3ab=62-3×8=12,所以c=2.
5.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割均为0.618,这一数值也可以表示为m=2sin 18°,若m2+n=4,则=( )
A.8 B.4
C.2 D.1
解析:选C.因为m=2sin 18°,
若m2+n=4,
则n=4-m2=4-4sin218°=4(1-sin218°)=4cos218°,
所以====2.
6.(2019·杭州市高三期末检测)设点P在△ABC的BC边所在的直线上从左到右运动,设△ABP与△ACP的外接圆面积之比为λ,当点P不与B,C重合时( )
A.λ先变小再变大
B.当M为线段BC中点时,λ最大
C.λ先变大再变小
D.λ是一个定值
解析:选D.设△ABP与△ACP的外接圆半径分别为r1,r2,
- 8 -
则2r1=,2r2=,
因为∠APB+∠APC=180°,
所以sin∠APB=sin∠APC,
所以=,
所以λ==.故选D.
7.(2019·福州市综合质量检测)已知m=,若sin 2(α+γ)=3sin 2β,则m=( )
A. B.
C. D.2
解析:选D.设A=α+β+γ,B=α-β+γ,
则2(α+γ)=A+B,2β=A-B,
因为sin 2(α+γ)=3sin 2β,
所以sin(A+B)=3sin(A-B),
即sin Acos B+cos Asin B=3(sin Acos B-cos Asin B),
即2cos Asin B=sin Acos B,
所以tan A=2tan B,
所以m==2,故选D.
8.(2019·咸阳二模)已知△ABC的三个内角A,B,C的对边分别为a,b,c,且+=2c2,sin A(1-cos C)=sin Bsin C,b=6,AB边上的点M满足=2,过点M的直线与射线CA,CB分别交于P,Q两点,则MP2+MQ2的最小值是( )
A.36 B.37
C.38 D.39
解析:选A.由正弦定理,知+=2c2,即2=2sin2C,所以sin C=1,C=,所以sin A(1-cos C)=sin Bsin C,即sin A=sin B,所以A=B=.以C为坐标原点建立如图所示的平面直角坐标系,则M(2,4),设∠MPC=θ,θ∈,则MP2+MQ2=+=(sin2θ+cos2θ)=
- 8 -
20+4tan2θ+≥36,当且仅当tan θ=时等号成立,即MP2+MQ2的最小值为36.
9.已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),则A=________,b=________.
解析:由于2cos2x+sin 2x=1+cos 2x+sin 2x
=sin(2x+)+1,所以A=,b=1.
答案: 1
10.若α∈,cos=2cos 2α,则sin 2α=________.
解析:由已知得(cos α+sin α)=2(cos α-sin α)·(cos α+sin α),
所以cos α+sin α=0或cos α-sin α=,
由cos α+sin α=0得tan α=-1,
因为α∈,
所以cos α+sin α=0不满足条件;
由cos α-sin α=,两边平方得1-sin 2α=,
所以sin 2α=.
答案:
11.(2019·金丽衢十二校联考二模)在△ABC中,内角A、B、C所对的边分别为a、b、c,acos B=bcos A,4S=2a2-c2,其中S是△ABC的面积,则C的大小为________.
解析:△ABC中,acos B=bcos A,
所以sin Acos B=sin Bcos A,
所以sin Acos B-cos Asin B=sin(A-B)=0,
所以A=B,所以a=b;
又△ABC的面积为S=absin C,
且4S=2a2-c2,
所以2absin C=2a2-c2=a2+b2-c2,
所以sin C==cos C,
所以C=.
- 8 -
答案:
12.(2019·绍兴市一中高三期末检测)△ABC中,D为线段BC的中点,AB=2AC=2,tan∠CAD=sin∠BAC,则BC=________.
解析:由正弦定理可知=2,又tan∠CAD=sin∠BAC,则=sin(∠CAD+∠BAD),利用三角恒等变形可化为
cos∠BAC=,据余弦定理BC=
==.
答案:
13.(2019·惠州第一次调研)已知a,b,c是△ABC中角A,B,C的对边,a=4,b∈(4,6),sin 2A=sin C,则c的取值范围为________.
解析:由=,得=,所以c=8cos A,因为16=b2+c2-2bccos A,所以16-b2=64cos2A-16bcos2A,又b≠4,所以cos2A===,所以c2=64cos2A=64×=16+4b.因为b∈(4,6),所以32
相关文档
- 高科数学专题复习课件:高考专题突破2021-06-1551页
- 【数学】2019届一轮复习人教A版(文)2021-06-1518页
- 【数学】2019届一轮复习北师大版三2021-06-1510页
- 2021高考数学大一轮复习单元质检四2021-06-157页
- 人教大纲版高考数学题库考点9 角2021-06-157页
- 【数学】2018届一轮复习人教A版(理)42021-06-1518页
- 高中数学必修4:1_3_1三角函数的诱导2021-06-158页
- 【数学】2020届江苏一轮复习通用版2021-06-156页
- 高考数学专题复习:课时达标检测(二十2021-06-155页
- 高一数学三角函数基础题(4)两角和与2021-06-155页