• 175.00 KB
  • 2021-06-16 发布

高中数学人教A版必修四全册教案3_2简单的三角恒等变换(三)

  • 2页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎3.2简单的三角恒等变换(三)‎ 教学目标 (一) 知识与技能目标 熟练掌握三角公式及其变形公式.‎ (二) 过程与能力目标 抓住角、函数式得特点,灵活运用三角公式解决一些实际问题.‎ (三) 情感与态度目标 培养学生观察、分析、解决问题的能力.‎ 教学重点 和、差、倍角公式的灵活应用.‎ 教学难点 如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明.‎ 教学过程 例1:教材P141面例4‎ 例1. 如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=a,求当角a取何值时,矩形ABCD的面积最大?并求出这个最大面积.‎ θ 例2:把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)‎ 解:(1)如图,设矩形长为l,则面积,‎ 所以当且仅当 即时,取得最大值,此时S取得最大值,矩形的宽为 即长、宽相等,矩形为圆内接正方形.‎ ‎(2)设角为自变量,设对角线与一条边的夹角为,矩形长与宽分别为 ‎、,所以面积.‎ 而,所以,当且仅当时,S取最大值,所以当且仅当即时, S取最大值,此时矩形为内接正方形.‎ P Q R S O 变式:已知半径为1的半圆,PQRS是半圆的内接矩形如图,问P点在什么位置时,矩形的面积最大,并求最大面积时的值.‎ 解:设则 故S四边形PQRS 故为时,‎ 课堂小结 ‎ 建立函数模型利用三角恒等变换解决实际问题.‎ 课后作业 ‎ ‎1. 阅读教材P.139到P.142; 2. 《习案》作业三十五.‎