• 83.50 KB
  • 2021-06-16 发布

高中数学必修2教案:4_1_1圆的标准方程。doc

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎4.1.1‎ 圆的标准方程 三维目标:‎ 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。‎ ‎2、会用待定系数法求圆的标准方程。‎ 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。‎ 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。‎ 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。‎ 教学过程:‎ ‎1、情境设置:‎ 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?‎ 探索研究:‎ ‎2、探索研究:‎ 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件 ①‎ 化简可得: ②‎ 引导学生自己证明为圆的方程,得出结论。‎ 方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。‎ ‎3、知识应用与解题研究 例(1):写出圆心为半径长等于5的圆的方程,并判断点是否在这个圆上。‎ 分析探求:可以从计算点到圆心的距离入手。‎ 探究:点与圆的关系的判断方法:‎ ‎(1)>,点在圆外 ‎(2)=,点在圆上 ‎(3)<,点在圆内 例(2): 的三个顶点的坐标是求它的外接圆的方程 ‎ 师生共同分析:从圆的标准方程 可知,要确定圆的标准方程,可用待定系数法确定三个参数.(学生自己运算解决)‎ 例(3):已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程.‎ 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在险段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。‎ ‎(教师板书解题过程。) ‎ 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出 外接圆的标准方程的两种求法:‎ ①、 根据题设条件,列出关于的方程组,解方程组得到得值,写出圆的标准方程.‎ 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.‎ 练习:课本第1、3、4题 提炼小结:‎ 1、 圆的标准方程。‎ 2、 点与圆的位置关系的判断方法。‎ 3、 根据已知条件求圆的标准方程的方法。‎ 作业:课本习题4.1第2、3、4题