- 2.45 MB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第六章 平面向量初步
章末复习课
章 末 整 合
要点回顾
真题突破
素养突破
·
提技能
真题精练
·
悟考情
要点回顾
网络构建
1
.
平面向量的基本概念
主要应掌握向量的概念、零向量、单位向量、平行向量、相等向量、共线向量等概念,这些概念是考试的热点,一般都是以选择题或填空题出现,尤其是单位向量常与向量的平行的坐标形式结合考查,一些学生往往只求出一个而遗漏另一个.
核心归纳
2
.
向量的线性运算
主要应掌握向量加法的三角形法则与平行四边形法则,甚至推广到向量加法的多边形法则;掌握向量减法的三角形法则;数乘向量运算的性质和法则及运算律.同时要灵活运用这些知识解决三点共线、两线段相等及两直线平行等问题.
3
.
向量的坐标运算
主要应掌握用向量坐标运算的法则、公式进行向量加、减与数乘运算;能用向量共线的坐标表示证明两向量平行或证明三点共线;能用平面向量基本定理和基底表示平面内任意一个向量.
4
.
平面向量的应用
一是要掌握平面几何中的向量方法,能用向量证明一些平面几何问题;二是能用向量解决一些物理问题,如力、位移、速度等.
专题突破
一组不共线向量可以充当平面向量的基底,平面内的任一向量均可写成它的线性表达式,且表达式是唯一的.
基底向量表示其他向量
专题
一
典例
1
1
.向量的加法、减法和数乘向量的综合运算通常称为向量的线性运算.
2
.向量线性运算的结果仍是一个向量.因此对它们的运算法则、运算律的理解和运用要注意大小、方向两个方面.
平面向量的线性运算
专题
二
3
.向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线问题、共点问题.
4
.题型主要有证明三点共线、两线段平行、线段相等、求点或向量的坐标等.
典例
2
1
.向量的坐标表示实际上是向量的代数表示.引入向量的坐标表示后,向量的运算完全化为代数运算,实现数与形的统一.
2
.向量的坐标运算是将几何问题代数化的有力工具,它是转化思想、函数与方程、分类讨论、数形结合思想方法的具体体现.
3
.通过向量坐标运算主要解决求向量的坐标、向量的模、夹角判断共线、平行、垂直等问题.
向量的坐标运算
专题
三
典例
3
[
分析
]
(1)
先求
B
、
D
点的坐标,再求
M
点坐标;
(2)
由向量相等转化为
y
与
λ
的方程求解.
运用向量平行
(
共线
)
证明常用的结论有:
(1)
向量
a
,
b
(
a
≠0)
共线
⇔
存在唯一实数
λ
,使
b
=
λ
a
;
(2)
向量
a
=
(
x
1
,
y
1
)
,
b
=
(
x
2
,
y
2
)
共线
⇔
x
1
y
2
=
x
2
y
1
;
(3)
向量
a
与
b
共线
⇔
存在不全为零的实数
λ
1
,
λ
2
,使
λ
1
a
+
λ
2
b
=
0
.
判断两向量所在的直线共线时,除满足定理的要求外,还应说明此两直线有公共点.
向量的共线问题
专题
四
典例
4
相关文档
- 【数学】2018届一轮复习人教A版专2021-06-1621页
- 【数学】2018届一轮复习人教A版平2021-06-1612页
- 【数学】2020届一轮复习人教B版(文)12021-06-1611页
- 【新教材】2020-2021学年高中人教A2021-06-165页
- 2019届二轮复习(理)平面向量学案(全国2021-06-1615页
- 2018届二轮复习专题三第3讲 平面2021-06-1643页
- 【数学】2020届一轮复习苏教版专题2021-06-1614页
- 2018届二轮复习(文)专题二第3讲 平2021-06-1634页
- 2020年高中数学新教材同步必修第二2021-06-1611页
- 【数学】2021届一轮复习人教版(文)292021-06-167页