- 193.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
章末综合测评(三) 概率
(时间 120 分钟,满分 150 分)
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题
给出的四个选项中,只有一项是符合题目要求的)
1.下列事件中,随机事件的个数为( )
①在学校明年召开的田径运动会上,学生张涛获得 100 米短跑冠
军;
②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到
李凯;
③从标有 1,2,3,4 的 4 张号签中任取一张,恰为 1 号签;
④在标准大气压下,水在 4℃时结冰.
A.1 B.2
C.3 D.4
【解析】 ①在明年运动会上,可能获冠军,也可能不获冠军.②
李凯不一定被抽到.③任取一张不一定为 1 号签.④在标准大气压下
水在 4℃时不可能结冰,故①②③是随机事件,④是不可能事件.
【答案】 C
2.下列说法正确的是( )
A.甲、乙二人比赛,甲胜的概率为3
5
,则比赛 5 场,甲胜 3 场
B.某医院治疗一种疾病的治愈率为 10%,前 9 个病人没有治愈,
则第 10 个病人一定治愈
C.随机试验的频率与概率相等
D.天气预报中,预报明天降水概率为 90%,是指降水的可能性是
90%
【解析】 概率只是说明事件发生的可能性大小,其发生具有随
机性.故选 D.
【答案】 D
3.(2016·开封高一检测)给甲、乙、丙三人打电话,若打电话的顺
序是任意的,则第一个打电话给甲的概率是( )
A.1
6 B.1
3
C.1
2 D.2
3
【解析】 给三人打电话的不同顺序有 6 种可能,其中第一个给
甲打电话的可能有 2 种,故所求概率为 P=2
6
=1
3.故选 B.
【答案】 B
4.在区间[-2,1]上随机取一个数 x,则 x∈[0,1]的概率为( )
A.1
3 B.1
4
C.1
2 D.2
3
【解析】 由几何概型的概率计算公式可知 x∈[0,1]的概率 P=
1-0
1-(-2)=1
3.故选 A.
【答案】 A
5.1 升水中有 1 只微生物,任取 0.1 升化验,则有微生物的概率
为( )
A.0.1 B.0.2
C.0.3 D.0.4
【解析】 本题考查的是体积型几何概型.
【答案】 A
6.(2016·天水高一检测)从一批产品中取出三件产品,设 A=“三
件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不
全是次品”,则下列结论正确的是( )
A.A 与 C 互斥 B.B 与 C 互斥
C.任何两个均互斥 D.任何两个均不互斥
【解析】 互斥事件是不可能同时发生的事件,所以 B 与 C 互斥.
【答案】 B
7.某人从甲地去乙地共走了 500 m,途中要过一条宽为 x m 的河
流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物
品不掉在河里,则能找到,已知该物品能找到的概率为4
5
,则河宽为
( )
A.100 m B.80 m
C.50 m D.40 m
【解析】 设河宽为 x m,则 1- x
500
=4
5
,所以 x=100.
【答案】 A
8.从一批羽毛球中任取一个,如果其质量小于 4.8 g 的概率是 0.3,
质量不小于 4.85 g 的概率是 0.32,那么质量在[4.8,4.85)范围内的概率
是( )
A.0.62 B.0.38
C.0.70 D.0.68
【解析】 记“取到质量小于 4.8 g”为事件 A,“取到质量不小于
4.85 g”为事件 B,“取到质量在[4.8,4.85)范围内”为事件 C.易知事件
A,B,C 互斥,且 A∪B∪C 为必然事件.所以 P(A∪B∪C)=P(A)+
P(B)+P(C)=0.3+0.32+P(C)=1,即 P(C)=1-0.3-0.32=0.38.
【答案】 B
9.如图 1,矩形 ABCD 中,点 E 为边 CD 的中点,若在矩形 ABCD
内部随机取一个点 Q,则点 Q 取自△ABE 内部的概率等于( ) 【导
学号:28750071】
图 1
A.1
4 B.1
3
C.1
2 D.2
3
【 解 析 】 点 E 为 边 CD 的 中 点 , 故 所 求 的 概 率 P =
△ABE 的面积
矩形 ABCD 的面积=1
2.
【答案】 C
10.将区间[0,1]内的均匀随机数 x1 转化为区间[-2,2]内的均匀
随机数 x,需要实施的变换为( )
A.x=x1*2 B.x=x1*4
C.x=x1*2-2 D.x=x1*4-2
【解析】 由题意可知 x=x1*(2+2)-2=4x1-2.
【答案】 D
11.先后抛掷两颗骰子,设出现的点数之和是 12,11,10 的概率
依次是 P1,P2,P3,则( )
A.P1=P2<P3 B.P1<P2<P3
C.P1<P2=P3 D.P3=P2<P1
【解析】 先后抛掷两颗骰子的点数共有 36 个基本事件:(1,1),
(1,2),(1,3),…,(6,6),并且每个基本事件都是等可能发生的.而
点数之和为 12 的只有 1 个:(6,6);点数之和为 11 的有 2 个:(5,6),
(6,5);点数之和为 10 的有 3 个:(4,6),(5,5),(6,4),故 P1<P2
<P3.
【答案】 B
12.在 5 件产品中,有 3 件一等品和 2 件二等品,从中任取 2 件,
则下列选项中以 7
10
为概率的事件是( )
A.恰有 1 件一等品 B.至少有一件一等品
C.至多有一件一等品 D.都不是一等品
【解析】 将 3 件一等品编号为 1,2,3,2 件二等品编号为 4,5,
从中任取 2 件有 10 种取法:(1,2),(1,3),(1,4),(1,5),(2,3),
(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有 1 件一等品的取
法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有 1 件一
等品的概率为 P1= 6
10
,恰有 2 件一等品的取法有:(1,2),(1,3),(2,
3).故恰有 2 件一等品的概率为 P2= 3
10
,其对立事件是“至多有一件
一等品”,概率为 P3=1-P2=1- 3
10
= 7
10.
【答案】 C
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在
题中横线上).
13.一个袋子中有 5 个红球,3 个白球,4 个绿球,8 个黑球,如
果随机地摸出一个球,记 A={摸出黑球},B={摸出白球},C={摸出
绿球},D={摸出红球},则 P(A)=________;P(B)=________;P(C∪D)
=________.
【解析】 由古典概型的算法可得 P(A)= 8
20
=2
5
,P(B)= 3
20
,P(C∪D)
=P(C)+P(D)= 4
20
+ 5
20
= 9
20.
【答案】 2
5
3
20
9
20
14.在区间(0,1)内任取一个数 a,能使方程 x2+2ax+1
2
=0 有两
个相异实根的概率为________.
【解析】 方程有两个相异实根的条件是Δ=(2a)2-4×1×1
2
=4a2
-2>0,解得|a|> 2
2
,又 a∈(0,1),所以 2
2
相关文档
- 2020届二轮复习平面向量与复数学案2021-06-1612页
- 【数学】2020届一轮复习(理)通用版8-2021-06-1612页
- 【数学】2020届一轮复习(理)通用版考2021-06-169页
- 【数学】2020届一轮复习(文)通用版7-2021-06-166页
- 【数学】2020届一轮复习人教B版(文)12021-06-168页
- 【数学】2020届一轮复习(理)通用版考2021-06-169页
- 高中数学第六章平面向量初步6-1-32021-06-1629页
- 2020年陕西省铜川市高考数学二模试2021-06-1619页
- 高考卷 普通高等学校招生全国统一2021-06-1611页
- 湖北省宜昌市2020届高三下学期4月2021-06-1625页