集合的基本运算(1) 3页

  • 92.50 KB
  • 2021-06-20 发布

集合的基本运算(1)

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ ‎ ‎§1.1.3 集合的基本运算 一. 教学目标:‎ ‎ 1. 知识与技能 ‎ (1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.‎ ‎ (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.‎ ‎ (3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.‎ ‎2. 过程与方法 学生通过观察和类比,借助Venn图理解集合的基本运算.‎ ‎3.情感.态度与价值观 ‎ (1)进一步树立数形结合的思想.‎ ‎ (2)进一步体会类比的作用.‎ ‎ (3)感受集合作为一种语言,在表示数学内容时的简洁和准确.‎ 二.教学重点.难点 ‎ 重点:交集与并集,全集与补集的概念.‎ ‎ 难点:理解交集与并集的概念.符号之间的区别与联系.‎ 三.学法与教学用具 ‎ 1.学法:学生借助Venn图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.‎ ‎ 2.教学用具:投影仪.‎ 四. 教学思路 ‎(一)创设情景,揭示课题 ‎ 问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?‎ ‎ 请同学们考察下列各个集合,你能说出集合C与集合A.B之间的关系吗?‎ ‎ (1)‎ ‎(2)‎ 引导学生通过观察,类比.思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。‎ ‎ (二)研探新知 ‎ l.并集 ‎ —般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.‎ ‎ 记作:A∪B.‎ ‎ 读作:A并B.‎ ‎ 其含义用符号表示为:‎ 用Venn图表示如下:‎ ‎ B A A 3‎ ‎ ‎ 请同学们用并集运算符号表示问题1中A,B,C三者之间的关系.‎ 练习.检查和反馈 ‎ (1)设A={4,5,6,8),B={3,5,7,8),求A∪B.‎ ‎ (2)设集合A ‎ 让学生独立完成后,教师通过检查,进行反馈,并强调:‎ ‎ (1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.‎ ‎ (2)对于表示不等式解集的集合的运算,可借助数轴解题.‎ ‎ 2.交集 ‎ (1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?‎ 请同学们考察下面的问题,集合A.B与集合C之间有什么关系?‎ ‎①‎ ‎②B={|是国兴中学2004年9月入学的高一年级同学},C={|是国兴中学2004年9月入学的高一年级女同学}.‎ 教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;‎ 一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.‎ 记作:A∩B.‎ 读作:A交B 其含义用符号表示为:‎ 接着教师要求学生用Venn图表示交集运算.‎ ‎ A ‎ B ‎(2)练习.检查和反馈 ‎①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系.‎ ‎②学校里开运动会,设A={|是参加一百米跑的同学},B={|是参加二百米跑的同学},C={|是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A∩B与A∩C的含义.‎ 学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.‎ ‎(三)学生自主学习,阅读理解 ‎1.教师引导学生阅读教材第11~12页中有关补集的内容,并思考回答下例问题:‎ ‎(1)什么叫全集?‎ ‎(2)补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?‎ 3‎ ‎ ‎ ‎(3)已知集合.‎ ‎(4)设S={|是至少有一组对边平行的四边形},A={|是平行四边形},B={|是菱形},C={|是矩形},求.‎ 在学生阅读.思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价.‎ ‎(四)归纳整理,整体认识 ‎1.通过对集合的学习,同学对集合这种语言有什么感受?‎ ‎2.并集.交集和补集这三种集合运算有什么区别?‎ ‎(五)作业 ‎1.课外思考:对于集合的基本运算,你能得出哪些运算规律?‎ ‎2.请你举出现实生活中的一个实例,并说明其并集.交集和补集的现实含义.‎ ‎3.书面作业:教材第14页习题1.1A组第7题和B组第4题.‎ 3‎