- 522.80 KB
- 2021-06-20 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第1课时 绝对值不等式
1.绝对值不等式的解法
(1)含绝对值的不等式|x|a的解集:
不等式
a>0
a=0
a<0
|x|a
(-∞,-a)∪
(a,+∞)
(-∞,0)∪
(0,+∞)
R
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:
①|ax+b|≤c⇔-c≤ax+b≤c;
②|ax+b|≥c⇔ax+b≥c或ax+b≤-c;
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:
①利用绝对值不等式的几何意义求解,体现了数形结合的思想;
②利用“零点分段法”求解,体现了分类讨论的思想;
③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.
2.含有绝对值的不等式的性质
(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.
(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.
1.(2015·山东改编)解不等式|x-1|-|x-5|<2的解集.
解 ①当x≤1时,原不等式可化为1-x-(5-x)<2,
∴-4<2,不等式恒成立,∴x≤1.
②当15;
当-2≤x<时,5≥y=-x+3>;
当x≥时,y=3x+1≥,故函数y=|2x-1|+|x+2|的最小值为.因为不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,所以≥a2+a+2.
解不等式≥a2+a+2,得-1≤a≤,故a的取值范围为[-1,].
题型一 绝对值不等式的解法
例1 (2015·课标全国Ⅰ)已知函数f(x)=|x+1|-2|x-a|,a>0.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.
解 (1)当a=1时,
f(x)>1化为|x+1|-2|x-1|-1>0.
当x≤-1时,不等式化为x-4>0,无解;
当-10,解得0,解得1≤x<2.
所以f(x)>1的解集为.
(2)由题设可得,f(x)=
所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a+1,0),C(a,a+1),
△ABC的面积为(a+1)2.
由题设得(a+1)2>6,故a>2.
所以a的取值范围为(2,+∞).
思维升华 解绝对值不等式的基本方法有:
(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;
(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;
(3)利用绝对值的几何意义,数形结合求解.
(1)解不等式|x-1|+|x+2|≥5的解集.
(2)若关于x的不等式|ax-2|<3的解集为{x|-0时,-3或
解得x>.
(2)函数g(x)≤f(x)在x∈[-2,2]上恒成立,
即|x+a|-4≤|x-3|-|x+1|在x∈[-2,2]上恒成立,在同一个坐标系中画出函数f(x)和g(x)的图象,如图所示.
故当x∈[-2,2]时,若0≤-a≤4时,则函数g(x)在函数f(x)的图象的下方,g(x)≤f(x)在x∈[-2,2]上恒成立,
求得-4≤a≤0,故所求的实数a的取值范围为[-4,0].
思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.
已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
解 (1)当a=-3时,f(x)=
当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;
当2a对于一切x∈R恒成立,求实数a的取值范围.
解 由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2,所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.
3.对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围.
解 因为|a-b|≤1,|2a-1|≤1,
所以|3a-3b|≤3,|a-|≤,
所以|4a-3b+2|=|(3a-3b)+(a-)+|
≤|3a-3b|+|a-|+≤3++=6,
即|4a-3b+2|的最大值为6,
所以m≥|4a-3b+2|max=6.
4.已知f(x)=|x-3|,g(x)=-|x-7|+m,若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.
解 由题意,可得不等式|x-3|+|x-7|-m>0恒成立,即(|x-3|+|x-7|)min>m,由于x轴上的点到点(3,0)和点(7,0)的距离之和的最小值为4,所以要使不等式恒成立,则m<4.
5.(2016·江苏)设a>0,<,|y-2|<,求证:|2x+y-4|<a.
证明 由a>0,|x-1|<可得|2x-2|<,
又|y-2|<,
∴|2x+y-4|=|(2x-2)+(y-2)|≤|2x-2|+|y-2|<+=a.
即|2x+y-4|<a.
6.已知关于x的不等式|2x-m|≤1的整数解有且仅有一个值为2,求关于x的不等式|x-1|+|x-3|≥m的解集.
解 由不等式|2x-m|≤1,可得≤x≤,
∵不等式的整数解为2,
∴≤2≤,解得3≤m≤5.
再由不等式仅有一个整数解2,∴m=4.
本题即解不等式|x-1|+|x-3|≥4,
当x<1时,不等式等价于1-x+3-x≥4,
解得x≤0,不等式解集为{x|x≤0}.
当1≤x≤3时,不等式等价于x-1+3-x≥4,
解得x∈∅,不等式解集为∅.
当x>3时,不等式等价于x-1+x-3≥4,
解得x≥4,不等式解集为{x|x≥4}.
综上,原不等式解集为(-∞,0]∪[4,+∞).
7.已知函数f(x)=|x+1|-|2x-3|.
(1)在图中画出y=f(x)的图象;
(2)求不等式|f(x)|>1的解集.
解 (1)f(x)=
y=f(x)的图象如图所示.
(2)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;
当f(x)=-1时,可得x=或x=5,
故f(x)>1的解集为{x|11的解集为.
8.已知函数f(x)=|x+3|-|x-2|.
(1)求不等式f(x)≥3的解集;
(2)若f(x)≥|a-4|有解,求a的取值范围.
解 (1)f(x)=|x+3|-|x-2|≥3,
当x≥2时,有x+3-(x-2)≥3,解得x≥2;
当x≤-3时,-x-3+(x-2)≥3,解得x∈∅;
当-3-1,且当x∈时,f(x)≤g(x),求a的取值范围.
解 (1)当a=-2时,不等式f(x)-1,则-<,
∴f(x)=|2x-1|+|2x+a|
=
当x∈时,f(x)=a+1,
即a+1≤x+3在x∈上恒成立.
∴a+1≤-+3,即a≤,
∴a的取值范围为.
相关文档
- 高考数学专题复习练习第2讲 平面2021-06-206页
- 高考数学专题复习练习:9_2 两条直2021-06-2015页
- 高考数学专题复习练习:4-6 专项基2021-06-208页
- 高考数学专题复习练习:考点规范练62021-06-206页
- 高考数学专题复习练习:14-2-1 专项2021-06-205页
- 高考数学专题复习练习:11-4 专项基2021-06-205页
- 高考数学专题复习练习选修4-1 第12021-06-195页
- 高考数学专题复习练习第三章 第五2021-06-195页
- 高考数学专题复习练习:第十二章 12_2021-06-1913页
- 高考数学专题复习练习:6_1 数列的2021-06-1913页