- 40.00 KB
- 2021-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
备课资料
[备选例题]
【例1】某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x万元,可获得利润P=(x-40)2+100万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x万元,可获利润Q=(60-x)2+(60-x)万元.问从10年的累积利润看,该规划方案是否可行?
解:在实施规划前,由题设P=(x-40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元.
则10年的总利润为W1=100×10=1 000(万元).
实施规划后的前5年中,由题设P=(x-40)2+100,知每年投入30万元时,有最大利润Pmax=(万元).
前5年的利润和为×5=(万元).
设在公路通车的后5年中,每年用x万元投资于本地的销售,而用剩下的(60-x)万元用于外地区的销售投资,则其总利润为
W2=[(x-40)2+100]×5+(x2+x)×5=-5(x-30)2+4 950.
当x=30时,(W2)max=4 950(万元).
从而10年的总利润为+4950(万元).
∵+4 950>1000,∴该规划方案有极大实施价值.
(设计者:张建国)
相关文档
- 高中数学必修1教案:第四章(第7课时)同2021-06-207页
- 高中数学必修1教案:第九章直线平面2021-06-205页
- 高中数学必修1教案:第一章(第2课时)2021-06-204页
- 高中数学必修1教案:第五章(第17课时)2021-06-195页
- 高中数学必修1教案:第五章(第24课时)2021-06-199页
- 高中数学必修1教案:第五章(第13课时)2021-06-195页
- 高中数学必修1教案:第四章(第33课时)2021-06-198页
- 高中数学必修1教案:第四章(第24课时)2021-06-196页
- 高中数学必修1教案第一章 章末复习2021-06-196页
- 高中数学必修1教案:第四章(第29课时)2021-06-197页