- 1.87 MB
- 2021-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2014·湖北卷(文科数学)
1.[2014·湖北卷] 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=( )
A.{1,3,5,6}B.{2,3,7}
C.{2,4,7}D.{2,5,7}
1.C [解析]由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.
2.[2014·湖北卷] i为虚数单位,=( )
A.1B.-1C.iD.-i
2.B [解析]===-1.故选B.
3.[2014·湖北卷] 命题“∀x∈R,x2≠x”的否定是( )
A.∀x∈/R,x2≠xB.∀x∈R,x2=x
C.∃x0∈/R,x≠x0D.∃x0∈R,x=x0
3.D [解析]特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x∈R,x2≠x”的否定是“∃x0∈R,x=x0”.故选D.
4.[2014·湖北卷] 若变量x,y满足约束条件则2x+y的最大值是( )
A.2B.4C.7D.8
4.C [解析]作出约束条件表示的可行域如下图阴影部分所示.
设z=2x+y,平移直线2x+y=0,易知在直线x+y=4与直线x-y=2的交点A(3,1)处,z=2x+y取得最大值7.故选C.
5.[2014·湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( )
A.p1<p2<p3B.p2<p1<p3
C.p1<p3<p2D.p3<p1<p2
5.C [解析]掷出两枚骰子,它们向上的点数的所有可能情况如下表:
1
2
3
4
5
6
1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12
则p1=,p2=,p3=.故p10,所以a>0,b<0.故选A.
图11
7.[2014·湖北卷] 在如图11所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )
图12
A.①和②B.③和①
C.④和③D.④和②
7.D [解析]由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.
8.、[2014·湖北卷] 设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线-=1的公共点的个数为( )
A.0B.1
C.2D.3
8.A [解析]由方程t2cosθ+tsinθ=0,解得t1=0,t2=-tanθ,不妨设点A(0,0),B(-tanθ,tan2θ),则过这两点的直线方程为y=-xtanθ,该直线恰是双曲线-=1的一条渐近线,所以该直线与双曲线无公共点.故选A.
9.、[2014·湖北卷] 已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数
g(x)=f(x)-x+3的零点的集合为( )
A.{1,3}B.{-3,-1,1,3}
C.{2-,1,3}D.{-2-,1,3}
9.D [解析]设x<0,则-x>0,所以f(x)=-f(-x)=-[(-x)2-3(-x)]=-x2-3x.
求函数g(x)=f(x)-x+3的零点等价于求方程f(x)=-3+x的解.
当x≥0时,x2-3x=-3+x,解得x1=3,x2=1;
当x<0时,-x2-3x=-3+x,解得x3=-2-.故选D.
10.[2014·湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为( )
A.B.
C.D.
10.B [解析]设圆锥的底面圆半径为r,底面积为S,则L=2πr.由题意得L2h≈Sh,代入S=πr2化简得π≈3.类比推理,若V≈L2h时,π≈.故选B.
11.[2014·湖北卷] 甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.
11.1800 [解析]设乙设备生产的产品总数为n,则=,解得n=1800.
12.、[2014·湖北卷] 若向量=(1,-3),
||=||,·=0,则||=________.
12.2 [解析]由题意知,=(3,1)或OB=(-3,-1),所以AB=OB-OA=(2,4)或AB=(-4,2),所以|AB|==2 .
13.[2014·湖北卷] 在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=,a=1,b=,则B=________.
13.或 [解析]由正弦定理得=,即=,解得sinB=.又因为b>a,所以B=或.
14.[2014·湖北卷] 阅读如图13所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为________.
图13
14.1067 [解析]第一次运行时,S=0+21+1,k=1+1;
第二次运行时,S=(21+1)+(22+2),k=2+1;
……
所以框图运算的是S=(21+1)+(22+2)+…+(29+9)=1067.
15.[2014·湖北卷] 如图14所示,函数y=f(x)的图像由两条射线和三条线段组成.
若∀x∈R,f(x)>f(x-1),则正实数a的取值范围为________.
图14
15. [解析]“∀x∈R,f(x)>f(x-1)”等价于“函数y=f(x)的图像恒在函数y=f(x-1)的图像的上方”,函数y=f(x-1)的图像是由函数y=f(x)的图像向右平移一个单位得到的,如图所示.因为a>0,由图知6a<1,所以a的取值范围为.
16.[2014·湖北卷] 某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.
(1)如果不限定车型,l=6.05,则最大车流量为________辆/小时;
(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/小时.
16.(1)1900 (2)100 [解析] (1)依题意知,l>0,v>0,所以当l=6.05时,
F==≤=1900,当且仅当v=11时,取等号.
(2)当l=5时,
F==≤2000,
当且仅当v=10时,取等号,此时比(1)中的最大车流量增加100辆/小时.
17.[2014·湖北卷] 已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则
(1)b=________;
(2)λ=________.
17.(1)- (2) [解析]设点M(cosθ,sinθ),则由|MB|=λ|MA|得(cosθ-b)2+sin2θ=λ2,即-2bcosθ+b2+1=4λ2cosθ+5λ2对任意的θ都成立,所以又由|MB|=λ|MA|,得λ>0,且b≠-2,解得
18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10-cost-sint,t∈[0,24).
(1)求实验室这一天上午8时的温度;
(2)求实验室这一天的最大温差.
18.解:(1)f(8)=10-cos-sin=10-cos-sin=10-×-=10.
故实验室上午8时的温度为10℃.
(2)因为f(t)=10-2=10-2sin,
又0≤t<24,
所以≤t+<,所以-1≤sin≤1.
当t=2时,sin=1;
当t=14时,sin=-1.
于是f(t)在[0,24)上取得最大值12,最小值8.
故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.
19.、、[2014·湖北卷] 已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.
19.解:(1)设数列{an}的公差为d,
依题意知,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),
化简得d2-4d=0,解得d=0或d=4,
当d=0时,an=2;
当d=4时,an=2+(n-1)·4=4n-2,
从而得数列{an}的通项公式为an=2或an=4n-2.
(2)当an=2时,Sn=2n,显然2n<60n+800,
此时不存在正整数n,使得Sn>60n+800成立.
当an=4n-2时,Sn==2n2.
令2n2>60n+800,即n2-30n-400>0,
解得n>40或n<-10(舍去),
此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.
综上,当an=2时,不存在满足题意的正整数n;
当an=4n-2时,存在满足题意的正整数n,其最小值为41.
20.、[2014·湖北卷] 如图15,在正方体ABCDA1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:
(1)直线BC1∥平面EFPQ;
(2)直线AC1⊥平面PQMN.
图15
20.证明:(1)连接AD1,由ABCDA1B1C1D1是正方体,
知AD1∥BC1.
因为F,P分别是AD,DD1的中点,所以FP∥AD1.
从而BC1∥FP.
而FP⊂平面EFPQ,且BC1⊄平面EFPQ,
故直线BC1∥平面EFPQ.
(2)如图,连接AC,BD,A1C1,则AC⊥BD.
由CC1⊥平面ABCD,BD⊂平面ABCD,
可得CC1⊥BD.
又AC∩CC1=C,所以BD⊥平面ACC1A1.
而AC1⊂平面ACC1A1,所以BD⊥AC1.
因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.
同理可证PN⊥AC1.
又PN∩MN=N,所以直线AC1⊥平面PQMN.
21.[2014·湖北卷] π为圆周率,e=2.71828…为自然对数的底数.
(1)求函数f(x)=的单调区间;
(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.
21.解:(1)函数f(x)的定义域为(0,+∞).
因为f(x)=,所以f′(x)=.
当f′(x)>0,即0e时,函数f(x)单调递减.
故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).
(2)因为e<3<π,所以eln3π3.
由<,得ln3e.
即当k∈(-∞,-1)∪时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.
(ii)若或由②③解得k∈或-≤k<0.
即当k∈时,直线l与C1只有一个公共点,与C2有一个公共点.
当k∈时,直线l与C1有两个公共点,与C2没有公共点.
故当k∈∪时,直线l与轨迹C恰好有两个公共点.
(iii)若由②③解得-1
相关文档
- 2015年全国统一高考数学试卷(理科)(新2021-06-2129页
- 2016年四川省高考数学试卷(文科)2021-06-2122页
- 2014年福建省高考数学试卷(文科)2021-06-2121页
- 2014年天津市高考数学试卷(文科)2021-06-2123页
- 2014年江苏省高考数学试卷2021-06-2129页
- 2012年四川省高考数学试卷(理科)2021-06-2129页
- 2013年江苏省高考数学试卷2021-06-2131页
- 2015年福建省高考数学试卷(理科)2021-06-2129页
- 2015年安徽省高考数学试卷(文科)2021-06-2120页
- 2014年四川省高考数学试卷(理科)2021-06-2125页