- 212.50 KB
- 2021-06-22 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
面面平行的性质
(答题时间:40分钟)
*1. 若α∥β,且a⊂α,b⊂β,则直线a与b的位置关系是________。
*2. 若α∥β,a⊂α,下列三个说法中正确的是________。
①a与β内所有直线平行;②a与β内的无数条直线平行;③a与β无公共点
*3. 若平面α∥平面β,且α、β间的距离为d,则在平面β内,下列说法正确的是________(填序号)。
①有且只有一条直线与平面α的距离为d
②所有直线与平面α的距离都等于d
③有无数条直线与平面α的距离等于d
④所有直线与平面α的距离都不等于d
**4.(大连高一检测)在长方体ABCD-A1B1C1D1中,若经过D1B的平面分别交AA1和CC1于点E、F,则四边形D1EBF的形状是________。
**5. 如图,P是△ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′∶AA′=2∶3,则=________。
**6. 如图,平面α∥平面β,△ABC与△A′B′C′分别在α、β内,线段AA′、BB′、CC′都交于点O,点O在α、β之间,若,OA∶OA′=3∶2,则△A′B′C′的面积为________。
**7. 如图所示,已知E、F分别是正方体ABCD-A1B1C1D1的棱AA1、CC1的中点,求证:四边形BED1F是平行四边形。
**8. 如图所示,设AB、CD为夹在两个平行平面α、β之间的线段,且直线AB、CD
4
为异面直线,M、P分别为AB、CD的中点。求证:直线MP∥平面β。
***9. 如图,平面α∥平面β,A、C∈α,B、D∈β,点E、F分别在线段AB与CD上,且。
求证:EF∥平面β。
4
1. 平行或异面 解析:利用正方体模型可知a与b的位置关系可以平行,也可以异面。
2. ②③ 解析:a与平面β内的直线可能平行,也可能异面,但与β无公共点,故选②③。
3. ②③ 解析:由两平行平面间的距离可知,②③正确。
4. 平行四边形 解析:如图,正方体ABCD-A1B1C1D1中,平面ABB1A1∥平面CDD1C1,过D1B的平面BED1F与平面ABB1A1交于直线BE,与平面CDD1C1交于直线D1F,由面面平行的性质定理,故BE∥D1F.同理BF∥D1E.所以四边形D1EBF为平行四边形。
5. 解析:由平面α∥平面ABC,得AB∥A′B′,BC∥B′C′,AC∥A′C′,
由等角定理得∠ABC=∠A′B′C′,∠BCA=∠B′C′A′,∠CAB=∠C′A′B′,
从而△ABC∽△A′B′C′,△PAB∽△PA′B′,==。
6. 解析:根据题意有,∵AA′、BB′相交,
∴直线AA′、BB′确定一个平面ABA′B′,
∵平面α∥平面β,
∴AB∥A′B′,易得△ABO∽△A′B′O,①
△ABC∽△A′B′C′,②
由①得,由②得,
∴。
7. 证明:取D1D的中点G,连接EG、GC,
∵E是A1A的中点,G是D1D的中点,∴EG∥AD,
由正方体性质知AD∥BC,
∴EG∥BC,
∴四边形EGCB是平行四边形,∴EB∥GC.①
又∵G、F分别是D1D、C1C的中点,∴D1G∥FC,
4
∴四边形D1GCF为平行四边形,∴D1F∥GC。②
由①②得EB∥D1F。③
∴E、B、F、D1四点共面,四边形BED1F是平面四边形,
又∵平面ADD1A1∥平面BCC1B1,
平面EBFD1∩平面ADD1A1=ED1,
平面EBFD1∩平面BCC1B1=BF,
∴ED1∥BF。④
由③④得,四边形BED1F是平行四边形。
8. 证明:过点A作AE∥CD交平面β于E,连接DE、BE,
∵AE∥CD,∴AE、CD确定一个平面,设为γ,
则α∩γ=AC,β∩γ=DE。
由于α∥β,∴AC∥DE(面面平行的性质定理)
取AE中点N,连接NP、MN,
∵M、P分别为AB、CD的中点,∴NP∥DE,MN∥BE。又NPβ,DEβ,MNβ,BEβ,
∴NP∥β,MN∥β。又NP∩MN=N,∴平面MNP∥β。
∵MP平面MNP,∴MP∥β。
9. 证明:(1)若直线AB和CD共面,∵α∥β,平面ABDC与α、β分别交于AC、BD两直线,
∴AC∥BD。又∵,∴EF∥AC∥BD,∴EF∥平面β;
(2)若AB与CD异面,连接BC并在BC上取一点G,使得,
则在△BAC中,EG∥AC,AC平面α,∴EG∥α,
又∵α∥β,∴EG∥β。同理可得:GF∥BD,而BDβ,∴GF∥β,
∵EG∩GF=G,∴平面EGF∥β。又∵EF平面EGF,∴EF∥β。
综合(1)(2)得EF∥β。
4
相关文档
- 高中数学(人教A版)必修3能力强化提升2021-06-229页
- 高中数学选修2-2课件1_阶段复习课2021-06-2269页
- 高中数学:第四章《圆与方程》学案(新2021-06-222页
- 2018-2019学年湖北省宜昌县域高中2021-06-2220页
- 高中数学选修第1章1_3_2同步训练及2021-06-223页
- 2019-2020学年度上期高中调研考试2021-06-219页
- 2020高中数学 第1章 点、直线、面2021-06-214页
- 2020年高中数学第二章圆锥曲线与方2021-06-216页
- 2020年高中数学第二章推理与证明22021-06-216页
- 2020高中数学第三章指数函数和对数2021-06-213页