- 32.00 KB
- 2021-06-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
函数的单调性与最值易错点
主标题:函数的单调性与最值易错点
副标题:从考点分析函数的单调性与最值易错点,为学生备考提供简洁有效的备考策略。
关键词:函数,单调性,最值,易错点
难度:3
重要程度:5
内容:
【易错点】
1.函数单调性定义的理解
(1)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.(√)
(2)函数f(x)=2x+1在(-∞,+∞)上是增函数.(√)
(3)函数f(x)=在其定义域上是减函数.(×)
(4)已知f(x)=,g(x)=-2x,则y=f(x)-g(x)在定义域上是增函数.(√)
2.函数的单调区间与最值
(5)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)
(6)函数y=的单调递减区间是(-∞,0)∪(0,+∞).(×)
(7)函数y=lg|x|的单调递减区间为(0,+∞).(×)
(8)函数f(x)=log2(3x+1)的最小值为0.(×)
[剖析]
1.一个区别 “函数的单调区间”和“函数在某区间上单调”的区别:前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集,如(5).
2.两个防范 一是注意函数的定义域不连续的两个单调性相同的区间,要分别说明单调区间,不可说成“在其定义域上”单调,如(3);
二是若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集,如(6).
【易错典例】f(x)=是R上的单调递增函数,则实数a的取值范围是( ).
A.(1,+∞) B.[4,8) C.(4,8) D.(1,8)
[错解] 由题意知解得1<a<8.
[答案] D
[错因] 忽视函数在定义域两段区间分界点上的函数值的大小.
[正解] f(x)在R上单调递增,则有
解得:4≤a<8.
[答案] B
[注意] 对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.研究函数问题离不开函数图象,函数图象反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题、寻找解决问题的方法.