- 99.45 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
章末检测
一、选择题
1.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N等于( )
A.{-2,-1,0,1}
B.{-3,-2,-1,0}
C.{-2,-1,0}
D.{-3,-2,-1}
答案 C
解析 运用集合的运算求解.M∩N={-2,-1,0},故选C.
2.设全集为R,函数f(x)=的定义域为M,则∁RM为( )
A.[-1,1]
B.(-1,1)
C.(-∞,-1]∪[1,+∞)
D.(-∞,-1)∪(1,+∞)
答案 D
解析 由1-x2≥0,知-1≤x≤1.
∴M=[-1,1],∴∁RM=(-∞,-1)∪(1,+∞).
3.设全集U=R,M={x|x<-2,或x>2},N={x|10.
∴f(x1)-f(x2)>0.
∴f(x1)>f(x2).
∴f(x)为R上的减函数.
(2)解 ∵f(x)为奇函数,
∴f(-x)=2x+m=-f(x)=2x-m,
∴m=0.
17.函数f(x)=4x2-4ax+a2-2a+2在区间[0,2]上有最小值3,求a的值.
解 f(x)=4(x-)2-2a+2,
①当≤0,即a≤0时,函数f(x)在[0,2]上是增函数.
∴f(x)min=f(0)=a2-2a+2.
由a2-2a+2=3,得a=1±.
∵a≤0,∴a=1-.
②当0<<2,即00,满足f()=f(x)-f(y).
(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)-f()<2.
解 (1)在f()=f(x)-f(y)中,令x=y=1,
则有f(1)=f (1)-f(1),∴f(1)=0.
(2)∵f(6)=1,
∴f(x+3)-f()<2=f(6)+f(6),
∴f(3x+9)-f(6)
相关文档
- 高中数学必修1教案:第四章(第35课时)2021-06-246页
- 高中数学必修1教案:第九章直线平面2021-06-247页
- 高中数学必修1教案:第一章(第17课时2021-06-246页
- 高中数学必修1教案:第九章直线平面2021-06-245页
- 高中数学必修1教案:第四章(第19课时)2021-06-245页
- 高中数学必修1教案2_1_2-1指数函数2021-06-246页
- 高中数学必修1教案:第九章直线平面2021-06-246页
- 高中数学必修1教案:第二章(第14课时)2021-06-245页
- 高中数学必修1教案:第一章(第12课时2021-06-244页
- 高中数学必修1教案:第五章(第9课时)平2021-06-246页