- 80.96 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
8.4(1)向量的应用(1)
一、教学内容分析
向量作为工具在数学、物理以及实际生活中都有着广泛的应用。
本小节的重点是结合向量知识证明平面几何中的平行、垂直问题,以及不等式、有关三角公式的证明、物理学中的应用.
本小结的难点是如何结合向量知识去解决有关问题,突破难点的关键是如何启发学生发现问题和提出问题,学会分析问题和创造性地解决问题.
二、教学目标设计
运用平面向量的知识解决平面几何中的平行、垂直等问题;提高分析问题、解决问题的能力.
三、教学重点及难点
教学重点:利用平面向量知识证明平行、垂直等问题;
教学难点:数形结合方法的渗透,思维能力的提高.
四、教学流程设计
实例引入
概念辨析
例题解析、巩固练习
课堂小结并布置作业
证明垂直
证明平行
五、教学过程设计
一、 复习与回顾
思考并回答下列问题
1.判断:(平行向量的理解)
(1)若A、B、C、D四点共线,则向量;( )
(2)若向量,则A、B、C、D四点共线;( )
(3)若,则向量; ( )
(4)只要向量满足,就有;( )
2.提问:(1)两个非零向量平行的充要条件是什么?
(2)两个非零向量垂直的充要条件是什么?
[说明] 教师可引导学生多写出一些两向量平行、垂直的表达形式.
二、学习新课21世纪教育网
例题分析
例1、证明:菱形对角线互相垂直。(补充)21世纪教育网
C
A
B
D
a
b
证:设== , ==
∵ABCD为菱形
∴|| = ||
∴×= ( + )( - ) = 2 - 2 = ||2 - ||2 = 0 ∴^
O
(A)
B
C
D
证法二:设B(b ,0),D(d1,d2),
则= (b,0), = (d1,d2)
于是=+= (b ,0) + (d1,d2)= (b +d1 ,d2)
=-= (d1 -b ,d2)
∵•= (b +d1)(d1 -b ) + d2d2 = (d12 + d22)- b 2
= ||2 - b 2 = ||2 - b 2 = b 2 - b 2 = 0
∴^
[说明]二种方法进行比较,开拓学生的解题思维,提高能力.]
例2、已知,,,求证是直角三角形.(补充)
C
H
B
A
例3、
(课本P72例2)
[小结]以上三题均是垂直问题的证明,请同学们注意它们间的区别与联系.
例4、证明:对角线互相平分的四边形是平行四边形.(课本P71例1)
三、课堂练习
例5、用向量方法证明:对角线相等的平行四边形是矩形.(习题册P39习题8.4 A组1)
四、课堂小结
1.用向量知识证明平行、垂直问题.21世纪教育网
2.要注意挖掘平面图形本身的几何性质.
四、作业布置
1、书面作业:课本P73, 练习8.4 1, 2, 3
2、习题册P39,习题8.4 A组/1;习题册P40,习题8.4 B组/1
3、思考题:
如图,在中,D,E分别是边AB、AC的中点,F,G分别是DB、EC的中点,
求证:向量与共线.
A
B
C
D
E
F
H
3、思考题:
如图,AD、BE、CF是△ABC的三条高,
求证:AD、BE、CF相交于一点.
七、教学设计说明
1.注意区分两向量平行、垂直充要条件的差别.建议学生结合图形,这样理解较为深刻.
2.在用向量证明有关数学问题时,要注意利用平面图形的几何性质,找到解题的突破口.
3.学生要注重综合能力的训练,要会举一反三、融会贯通.
相关文档
- 高中数学必修3教案:3_2_1 古典概型2021-06-244页
- 高中数学选修2-2教学课件2_3数学归2021-06-2414页
- 2018届二轮复习专题整合突破函数与2021-06-2426页
- 高中数学第6章(第8课时)不等式的证明2021-06-248页
- 上海市行知中学2020届高三上学期102021-06-2416页
- 2020届高考文科数学大二轮复习冲刺2021-06-2417页
- 高中数学必修2教案:3_3_3点到直线的2021-06-245页
- 高中数学选修2-1公开课课件2_4_2抛2021-06-2418页
- 高考数学专题复习教案: 向量的数乘2021-06-242页
- 高考数学专题复习练习第4讲 平面向2021-06-248页