- 61.05 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3讲 三角函数的图象与性质
一、选择题
1.函数f(x)=2sin xcos x是( ).
A.最小正周期为2 π的奇函数
B.最小正周期为2 π的偶函数
C.最小正周期为π的奇函数
D.最小正周期为π的偶函数
解析 f(x)=2sin xcos x=sin 2x.∴f(x)是最小正周期为π的奇函数.
答案 C
2.已知函数f(x)=sin(x+θ)+cos(x+θ)是偶函数,则θ的值为
( ).
A.0 B. C. D.
解析 据已知可得f(x)=2sin,若函数为偶函数,则必有θ+=kπ+(k∈Z),又由于θ∈,故有θ+=,解得θ=,经代入检验符合题意.
答案 B
3.函数y=2sin(0≤x≤9)的最大值与最小值之和为 ( ).
A.2- B.0 C.-1 D.-1-
解析 ∵0≤x≤9,∴-≤x-≤,∴-≤sin≤1,∴-≤2sin≤2.∴函数y=2sin(0≤x≤9)的最大值与最小值之和为2-.
答案 A
4.函数f(x)=(1+tan x)cos x的最小正周期为( ).
A.2π B. C.π D.
解析 依题意,得f(x)=cos x+sin x=2sin.故最小正周期为2π.
答案 A
5.函数y=sin2x+sin x-1的值域为( ).
A.[-1,1] B.
C. D.
解析 (数形结合法)y=sin2x+sin x-1,令sin x=t,则有y=t2+t-1,t∈[-1,1],画出函数图像如图所示,从图像可以看出,当t=-及t=1时,函数取最值,代入y=t2+t-1可得y∈.
答案 C
6.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ= ( ).
A. B. C. D.
解析 由题意可知函数f(x)的周期T=2×=2π,故ω=1,∴f(x)=sin(x+φ),令x+φ=kπ+(k∈Z),将x=代入可得φ=kπ+(k∈Z),∵0<φ<π,∴φ=.
答案 A
二、填空题
7.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈时,f(x)=sin x,则f的值为________.
解析 f=f=f=sin =.
答案
8.函数f(x)=的最大值为M,最小值为m,则M+m=________.
解析 (构造法)根据分子和分母同次的特点,把分子展开,得到部分分式,f(x)=1+,f(x)-1为奇函数,则m-1=-(M-1),所以M+m=2.
答案 2
9.已知函数f(x)=(sin x+cos x)-|sin x-cos x|,则f(x)的值域是________.
解析 f(x)=(sin x+cos x)-|sin x-cos x|
=
画出函数f(x)的图象,可得函数的最小值为-1,最大值为,故值域为.
答案
10.下列命题中:
①α=2kπ+(k∈Z)是tan α=的充分不必要条件;
②函数f(x)=|2cos x-1|的最小正周期是π;
③在△ABC中,若cos Acos B>sin Asin B,则△ABC为钝角三角形;
④若a+b=0,则函数y=asin x-bcos x的图象的一条对称轴方程为x=.
其中是真命题的序号为________.
解析 ①∵α=2kπ+(k∈Z)⇒tan α=,
而tan α=⇒/ α=2kπ+(k∈Z),∴①正确.
②∵f(x+π)=|2cos(x+π)-1|
=|-2cos x-1|=|2cos x+1|≠f(x),∴②错误.
③∵cos Acos B>sin Asin B,∴cos Acos B-sin Asin B>0,
即cos(A+B)>0,∵00,
∴-2asin∈[-2a,a].∴f(x)∈[b,3a+b],
又∵-5≤f(x)≤1,∴b=-5,3a+b=1,
因此a=2,b=-5.
(2)由(1)得a=2,b=-5,∴f(x)=-4sin-1,
g(x)=f=-4sin-1
=4sin-1,
又由lg g(x)>0,得g(x)>1,
∴4sin-1>1,∴sin>,
∴2kπ+<2x+<2kπ+,k∈Z,
其中当2kπ+<2x+≤2kπ+,k∈Z时,g(x)单调递增,即kπ<x≤kπ+,k∈Z,
∴g(x)的单调增区间为,k∈Z.
又∵当2kπ+<2x+<2kπ+,k∈Z时,g(x)单调递减,即kπ+<x<kπ+,k∈Z.
∴g(x)的单调减区间为,k∈Z.
综上,g(x)的递增区间为(k∈Z);递减区间为(k∈Z).
相关文档
- 高考数学专题复习练习:考点规范练242021-06-247页
- 高考数学专题复习练习:9-6 专项基2021-06-248页
- 高考数学专题复习练习:单元质检二2021-06-2410页
- 高考数学专题复习练习第6讲 抛物2021-06-248页
- 高考数学专题复习练习第8讲 曲线2021-06-247页
- 高考数学专题复习练习第4讲 平面向2021-06-248页
- 高考数学专题复习练习:第九章 9_8曲2021-06-2417页
- 高考数学专题复习练习:第二章 2_32021-06-2413页
- 高考数学专题复习练习:8_7 立体几2021-06-2419页
- 高考数学专题复习练习:3-2-2 专项2021-06-247页