- 589.50 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2015年湖北省高考数学试卷(理科)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)i为虚数单位,i607的共轭复数为( )
A.i B.﹣i C.1 D.﹣1
2.(5分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石 B.169石 C.338石 D.1365石
3.(5分)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )
A.212 B.211 C.210 D.29
4.(5分)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )
A.P(Y≥μ2)≥P(Y≥μ1) B.P(X≤σ2)≤P(X≤σ1)
C.对任意正数t,P(X≤t)≥P(Y≤t) D.对任意正数t,P(X≥t)≥P(Y≥t)
5.(5分)设a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比数列;q:(a12+a22+…+an﹣12)(a22+a32+…+an2)=(a1a2+a2a3+…+an﹣1an)2,则( )
A.p是q的充分条件,但不是q的必要条件
B.p是q的必要条件,但不是q的充分条件
C.p是q的充分必要条件
D.p既不是q的充分条件,也不是q的必要条件
6.(5分)已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则( )
A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnx C.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]
7.(5分)在区间[0,1]上随机取两个数x,y,记P1为事件“x+y≥”的概率,P2为事件“|x﹣y|≤”的概率,P3为事件“xy≤”的概率,则( )
A.P1<P2<P3 B.P2<P3<P1 C.P3<P1<P2 D.P3<P2<P1
8.(5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则( )
A.对任意的a,b,e1>e2
B.当a>b时,e1>e2;当a<b时,e1<e2
C.对任意的a,b,e1<e2
D.当a>b时,e1<e2;当a<b时,e1>e2
9.(5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为( )
A.77 B.49 C.45 D.30
10.(5分)设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[tn]=n同时成立,则正整数n的最大值是( )
A.3 B.4 C.5 D.6
二、填空题:本大题共4小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.
11.(5分)已知向量⊥,||=3,则•= .
12.(5分)函数f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln(x+1)|的零点个数为 .
13.(5分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.
14.(5分)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.
(1)圆C的标准方程为 ;
(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:
①=; ②﹣=2; ③+=2.
其中正确结论的序号是 .(写出所有正确结论的序号)
选修4-1:几何证明选讲
15.(5分)如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则= .
选修4-4:坐标系与参数方程
16.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sinθ﹣3cosθ)=0,曲线C的参数方程为( t为参数),l与C相交于A,B两点,则|AB|= .
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
17.(11分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ
0
π
2π
x
Asin(ωx+φ)
0
5
﹣5
0
(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.
18.(12分)设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn=,求数列{cn}的前n项和Tn.
19.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为,求的值.
20.(12分)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W
12
15
18
P
0.3
0.5
0.2
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.
21.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.
(1)求椭圆C的方程;
(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
22.(14分)已知数列{an}的各项均为正数,bn=n(1+)nan(n∈N+),e为自然对数的底数.
(1)求函数f(x)=1+x﹣ex的单调区间,并比较(1+)n与e的大小;
(2)计算,,,由此推测计算的公式,并给出证明;
(3)令cn=(a1a2…an),数列{an},{cn}的前n项和分别记为Sn,Tn,证明:Tn<eSn.
2015年湖北省高考数学试卷(理科)
参考答案与试题解析
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)(2015•湖北)i为虚数单位,i607的共轭复数为( )
A.i B.﹣i C.1 D.﹣1
【分析】直接利用复数的单位的幂运算求解即可.
【解答】解:i607=i604+3=i3=﹣i,
它的共轭复数为:i.
故选:A.
2.(5分)(2015•湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石 B.169石 C.338石 D.1365石
【分析】根据254粒内夹谷28粒,可得比例,即可得出结论.
【解答】解:由题意,这批米内夹谷约为1534×≈169石,
故选:B.
3.(5分)(2015•湖北)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )
A.212 B.211 C.210 D.29
【分析】直接利用二项式定理求出n,然后利用二项式定理系数的性质求出结果即可.
【解答】解:已知(1+x)n的展开式中第4项与第8项的二项式系数相等,
可得,可得n=3+7=10.
(1+x)10的展开式中奇数项的二项式系数和为:=29.
故选:D.
4.(5分)(2015•湖北)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )
A.P(Y≥μ2)≥P(Y≥μ1) B.P(X≤σ2)≤P(X≤σ1)
C.对任意正数t,P(X≤t)≥P(Y≤t) D.对任意正数t,P(X≥t)≥P(Y≥t)
【分析】直接利用正态分布曲线的特征,集合概率,直接判断即可.
【解答】解:正态分布密度曲线图象关于x=μ对称,所以μ1<μ2,从图中容易得到P(X≤t)≥P(Y≤t).
故选:C.
5.(5分)(2015•湖北)设a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比数列;q:(a12+a22+…+an﹣12)(a22+a32+…+an2)=(a1a2+a2a3+…+an﹣1an)2,则( )
A.p是q的充分条件,但不是q的必要条件
B.p是q的必要条件,但不是q的充分条件
C.p是q的充分必要条件
D.p既不是q的充分条件,也不是q的必要条件
【分析】运用柯西不等式,可得:(a12+a22+…+an﹣12)(a22+a32+…+an2)≥(a1a2+a2a3+…+an﹣1an)2,讨论等号成立的条件,结合等比数列的定义和充分必要条件的定义,即可得到.
【解答】解:由a1,a2,…,an∈R,n≥3.
运用柯西不等式,可得:
(a12+a22+…+an﹣12)(a22+a32+…+an2)≥(a1a2+a2a3+…+an﹣1an)2,
若a1,a2,…,an成等比数列,即有==…=,
则(a12+a22+…+an﹣12)(a22+a32+…+an2)=(a1a2+a2a3+…+an﹣1an)2,
即由p推得q,
但由q推不到p,比如a1=a2=a3=…=an=0,则a1,a2,…,an不成等比数列.
故p是q的充分不必要条件.
故选:A.
6.(5分)(2015•湖北)已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则( )
A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnx C.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]
【分析】直接利用特殊法,设出函数f(x),以及a的值,判断选项即可.
【解答】解:由于本题是选择题,可以采用特殊法,符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),
不妨令f(x)=x,a=2,
则g(x)=f(x)﹣f(ax)=﹣x,
sgn[g(x)]=﹣sgnx.所以A不正确,B正确,
sgn[f(x)]=sgnx,C不正确;D正确;
对于D,令f(x)=x+1,a=2,
则g(x)=f(x)﹣f(ax)=﹣x,
sgn[f(x)]=sgn(x+1)=;
sgn[g(x)]=sgn(﹣x)=,
﹣sgn[f(x)]=﹣sgn(x+1)=;所以D不正确;
故选:B.
7.(5分)(2015•湖北)在区间[0,1]上随机取两个数x,y,记P1为事件“x+y≥”的概率,P2为事件“|x﹣y|≤”的概率,P3为事件“xy≤”的概率,则( )
A.P1<P2<P3 B.P2<P3<P1 C.P3<P1<P2 D.P3<P2<P1
【分析】作出每个事件对应的平面区域,求出对应的面积,利用几何概型的概率公式进行计算比较即可.
【解答】解:分别作出事件对应的图象如图(阴影部分):
P1:D(0,),F(,0),A(0,1),B(1,1),C(1,0),
则阴影部分的面积S1=1×1﹣=1﹣=,
S2=1×1﹣2×=1﹣=,
S3=1×+dx=+lnx|=﹣ln=+ln2,
∴S2<S3<S1,
即P2<P3<P1,
故选:B.
8.(5分)(2015•湖北)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则( )
A.对任意的a,b,e1>e2
B.当a>b时,e1>e2;当a<b时,e1<e2
C.对任意的a,b,e1<e2
D.当a>b时,e1<e2;当a<b时,e1>e2
【分析】分别求出双曲线的离心率,再平方作差,即可得出结论.
【解答】解:由题意,双曲线C1:c2=a2+b2,e1=;
双曲线C2:c′2=(a+m)2+(b+m)2,e2=,
∴=﹣=,
∴当a>b时,e1<e2;当a<b时,e1>e2,
故选:D.
9.(5分)(2015•湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为( )
A.77 B.49 C.45 D.30
【分析】由题意可得,A={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),B={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2)(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)},根据定义可求
【解答】解:解法一:
∵A={(x,y)|x2+y2≤1,x,y∈Z}={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),
B={(x,y)||x|≤2,|y|≤2,x,y∈Z}={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2)(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)}
∵A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},
∴A⊕B={
(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2),(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2),
(﹣2,3),(﹣2,﹣3),(0,﹣3),(2,﹣3),(﹣1,3),(﹣1,﹣3),(1,3),(2,3),(0,3),(3,﹣1),(3,0)(3,1),(3,2),(3,﹣2)(﹣3,2)(﹣3,1),(1,﹣3),(﹣3,﹣1),(﹣3,0),(﹣3,﹣2)}共45个元素;
解法二:
因为集合A={(x,y)|x2+y2≤1,x,y∈Z},所以集合A中有5个元素,即图中圆中的整点,B={(x,y)||x|≤2,|y|≤2,x,y∈Z},中有5×5=25个元素,即图中正方形ABCD中的整点,A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B}的元素可看作正方形A1B1C1D1中的整点(除去四个顶点),即7×7﹣4=45个.
故选:C.
10.(5分)(2015•湖北)设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[tn]=n同时成立,则正整数n的最大值是( )
A.3 B.4 C.5 D.6
【分析】由新定义可得t的范围,验证可得最大的正整数n为4.
【解答】解:若[t]=1,则t∈[1,2),
若[t2]=2,则t∈[,)(因为题目需要同时成立,则负区间舍去),
若[t3]=3,则t∈[,),
若[t4]=4,则t∈[,),
若[t5]=5,则t∈[,),
其中≈1.732,≈1.587,≈1.495,≈1.431<1.495,
通过上述可以发现,当t=4时,可以找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)上,
但当t=5时,无法找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)∩[,)
上,
∴正整数n的最大值4
故选:B.
二、填空题:本大题共4小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.
11.(5分)(2015•湖北)已知向量⊥,||=3,则•= 9 .
【分析】由已知结合平面向量是数量积运算求得答案.
【解答】解:由⊥,得•=0,即•()=0,
∵||=3,
∴.
故答案为:9.
12.(5分)(2015•湖北)函数f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln(x+1)|的零点个数为 2 .
【分析】利用二倍角公式化简函数的解析式,求出函数的定义域,画出函数的图象,求出交点个数即可.
【解答】解:函数f(x)的定义域为:{x|x>﹣1}.
f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln(x+1)|
=2sinx﹣|ln(x+1)|
=sin2x﹣|ln(x+1)|,
分别画出函数y=sin2x,y=|ln(x+1)|的图象,
由函数的图象可知,交点个数为2.
所以函数的零点有2个.
故答案为:2.
13.(5分)(2015•湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= 100 m.
【分析】设此山高h(m),在△BCD中,利用仰角的正切表示出BC,进而在△ABC中利用正弦定理求得h.
【解答】解:设此山高h(m),则BC=h,
在△ABC中,∠BAC=30°,∠CBA=105°,∠BCA=45°,AB=600.
根据正弦定理得=,
解得h=100(m)
故答案为:100.
14.(5分)(2015•湖北)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.
(1)圆C的标准方程为 (x﹣1)2+(y﹣)2=2 ;
(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:
①=; ②﹣=2; ③+=2.
其中正确结论的序号是 ①②③ .(写出所有正确结论的序号)
【分析】(1)取AB的中点E,通过圆C与x轴相切于点T,利用弦心距、半径与半弦长之间的关系,计算即可;
(2)设M(cosα,sinα),N(cosβ,sinβ),计算出、、的值即可.
【解答】解:(1)∵圆C与x轴相切于点T(1,0),
∴圆心的横坐标x=1,取AB的中点E,
∵|AB|=2,∴|BE|=1,
则|BC|=,即圆的半径r=|BC|=,
∴圆心C(1,),
则圆的标准方程为(x﹣1)2+(y﹣)2=2,
故答案为:(x﹣1)2+(y﹣)2=2.
(2)∵圆心C(1,),∴E(0,),
又∵|AB|=2,且E为AB中点,
∴A(0,﹣1),B(0,+1),
∵M、N在圆O:x2+y2=1上,
∴可设M(cosα,sinα),N(cosβ,sinβ),
∴|NA|=
=
=
=
=,
|NB|=
=
=
=,
∴===,
同理可得=,
∴=,①成立,
﹣=﹣()=2,②正确.
+=+()=,③正确.
故答案为:①②③.
选修4-1:几何证明选讲
15.(5分)(2015•湖北)如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则= .
【分析】利用切割线定理推出PA=2PB,利用相似三角形求出比值即可.
【解答】解:由切割线定理可知:PA2=PB•PC,又BC=3PB,
可得PA=2PB,
在△PAB与△PAC中,∠P=∠P,∠PAB=∠PCA(同弧上的圆周角与弦切角相等),
可得△PAB∽△PAC,
∴==.
故答案为:.
选修4-4:坐标系与参数方程
16.(2015•湖北)在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sinθ﹣3cosθ)=0,曲线C的参数方程为( t为参数),l与C相交于A,B两点,则|AB|= .
【分析】化极坐标方程化直角坐标方程,参数方程化普通方程,联立直线方程和双曲线方程后求得交点坐标,由两点间的距离公式得答案.
【解答】解:由ρ(sinθ﹣3cosθ)=0,得y﹣3x=0,
由C的参数方程为( t为参数),两式平方作差得:x2﹣y2=﹣4.
联立,得,即.
∴A(),B(),
∴|AB|=.
故答案为:.
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
17.(11分)(2015•湖北)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ
0
π
2π
x
Asin(ωx+φ)
0
5
﹣5
0
(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.
【分析】(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.从而可补全数据,解得函数表达式为f(x)=5sin(2x﹣).
(2)由(Ⅰ)及函数y=Asin(ωx+φ)的图象变换规律得g(x)=5sin(2x+2θ﹣).令2x+2θ﹣=kπ,解得x=,k∈Z.令=,解得θ=,k∈Z.由θ>0可得解.
【解答】解:(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:
ωx+φ
0
π
2π
x
Asin(ωx+φ)
0
5
0
﹣5
0
且函数表达式为f(x)=5sin(2x﹣).
(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).
因为y=sinx的对称中心为(kπ,0),k∈Z.
令2x+2θ﹣=kπ,解得x=,k∈Z.
由于函数y=g(x)的图象关于点(,0)成中心对称,令=,
解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.
18.(12分)(2015•湖北)设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn=,求数列{cn}的前n项和Tn.
【分析】(1)利用前10项和与首项、公差的关系,联立方程组计算即可;
(2)当d>1时,由(1)知cn=,写出Tn、Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可.
【解答】解:(1)设a1=a,由题意可得,
解得,或,
当时,an=2n﹣1,bn=2n﹣1;
当时,an=(2n+79),bn=9•;
(2)当d>1时,由(1)知an=2n﹣1,bn=2n﹣1,
∴cn==,
∴Tn=1+3•+5•+7•+9•+…+(2n﹣1)•,
∴Tn=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,
∴Tn=2+++++…+﹣(2n﹣1)•=3﹣,
∴Tn=6﹣.
19.(12分)(2015•湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为,求的值.
【分析】解法1)(1)直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角.
(2)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可.
解法2)
(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系,运用向量的数量积判断即可.
2)由PD⊥底面ABCD,所以=(0,0,1)是平面ACDB的一个法向量;由(Ⅰ)知,PB⊥平面DEF,所以=(﹣λ,﹣1,1)是平面DEF的一个法向量.根据数量积得出夹角的余弦即可得出所求解的答案.
【解答】解法1)(1)因为PD⊥底面ABCD,所以PD⊥BC,
由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,
所以BC⊥平面PCD.而DE⊂平面PDC,所以BC⊥DE.
又因为PD=CD,点E是PC的中点,所以DE⊥PC.
而PC∩CB=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE.
又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF.
由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,
即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.
(2)如图1,
在面BPC内,延长BC与FE交于点G,则DG是平面DEF与平面ACBD的交线.
由(Ⅰ)知,PB⊥平面DEF,所以PB⊥DG.
又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.
所以DG⊥DF,DG⊥DB
故∠BDF是面DEF与面ABCD所成二面角的平面角,
设PD=DC=1,BC=λ,有BD=,
在Rt△PDB中,由DF⊥PB,得∠DGF=∠FDB=,
则 tan=tan∠DPF===,解得.
所以==
故当面DEF与面ABCD所成二面角的大小为时,=.
(解法2)
(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=λ,
则D(0,0,0),P(0,0,1),B(λ,1,0),C(0,1,0),=(λ1,﹣1),点E是PC的中点,所以E(0,,),=(0,,),
于是=0,即PB⊥DE.
又已知EF⊥PB,而ED∩EF=E,所以PB⊥平面DEF.
因=(0,1,﹣1),=0,则DE⊥PC,所以DE⊥平面PBC.
由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,
即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠
DFB.
(2)由PD⊥底面ABCD,所以=(0,0,1)是平面ACDB的一个法向量;
由(Ⅰ)知,PB⊥平面DEF,所以=(﹣λ,﹣1,1)是平面DEF的一个法向量.
若面DEF与面ABCD所成二面角的大小为,
则运用向量的数量积求解得出cos==,
解得.所以所以==
故当面DEF与面ABCD所成二面角的大小为时,=.
20.(12分)(2015•湖北)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W
12
15
18
P
0.3
0.5
0.2
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.
【分析】(1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,列出可行域,目标函数,通过当W=12时,当W=15时,当W=18时,分别求出目标函数的最大获利,然后得到Z的分布列.求出期望即可.
(2)判断概率类型是二项分布,然后求解所求概率即可.
【解答】(12分)
解:(1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,则有
,①如图1,目标函数为:z=1000x+1200y.
当W=12时,①表示的平面区域如图1,三个顶点分别为A(0,0),B(2.4,4.8),C(6,0).
将z=1000x+1200y变形为,
当x=2.4,y=4.8时,直线l:在y轴上的截距最大,
最大获利Z=Zmax=2.4×1000+4.8×1200=8160.
当W=15时,①表示的平面区域如图2,三个顶点分别为A(0,0),B(3,6),C(7.5,0)..
将z=1000x+1200y变形为,
当x=3,y=6时,直线l:在y轴上的截距最大,
最大获利Z=Zmax=3×1000+6×1200=10200.
当W=18时,①表示的平面区域如图3,四个顶点分别为A(0,0),B(3,6),C(6,4),D(9,0).
将z=1000x+1200y变形为:,
当x=6,y=4时,直线l:y=﹣56x+z1200在y轴上的截距最大,最大获利Z=Zmax=6×1000+4×1200=10800.
故最大获利Z的分布列为:
Z
8160
10200
10800
P
0.3
0.5
0.2
因此,E(Z)=8160×0.3+10200×0.5+10800×0.2=9708
(2)由(Ⅰ)知,一天最大获利超过10000元的概率P1=P(Z>10000)=0.5+0.2=0.7,
由二项分布,3天中至少有1天最大获利超过10000元的概率为:
.
21.(14分)(2015•湖北)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.
(1)求椭圆C的方程;
(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
【分析】(1)根据条件求出a,b即可求椭圆C的方程;
(2)联立直线方程和椭圆方程,求出原点到直线的距离,结合三角形的面积公式进行求解即可.
【解答】解:(1)设D(t,0),|t|≤2,
N(x0,y0),M(x,y),由题意得=2,
且||=||=1,
∴(t﹣x,﹣y)=2(x0﹣t,y0),且,
即,且t(t﹣2x0)=0,
由于当点D不动时,点N也不动,∴t不恒等于0,
于是t=2x0,故x0=,y0=﹣,
代入x02+y02=1,得方程为.
(2)①当直线l的斜率k不存在时,直线l为:x=4或x=﹣4,都有S△OPQ=,
②直线l的斜率k存在时,直线l为:y=kx+m,(k),
由消去y,可得(1+4k2)x2+8kmx+4m2﹣16=0,
∵直线l总与椭圆C有且只有一个公共点,
∴△=64k2m2﹣4(1+4k2)(4m2﹣16)=0,即m2=16k2+4,①,
由,可得P(,),同理得Q(,),
原点O到直线PQ的距离d=和|PQ|=•|xP﹣xQ|,
可得S△OPQ=|PQ|d=|m||xP﹣xQ|=|m|||=||②,
将①代入②得S△OPQ=||=8||,
当k2>时,S△OPQ=8()=8(1+)>8,
当0≤k2<时,S△OPQ=8||=﹣8()=8(﹣1+),
∵0≤k2<时,∴0<1﹣4k2≤1,≥2,
∴S△OPQ=8(﹣1+)≥8,当且仅当k=0时取等号,
∴当k=0时,S△OPQ的最小值为8,
综上可知当直线l与椭圆C在四个顶点处相切时,三角形OPQ的面积存在最小值为8.
22.(14分)(2015•湖北)已知数列{an}的各项均为正数,bn=n(1+)nan(n∈N+),e为自然对数的底数.
(1)求函数f(x)=1+x﹣ex的单调区间,并比较(1+)n与e的大小;
(2)计算,,,由此推测计算的公式,并给出证明;
(3)令cn=(a1a2…an),数列{an},{cn}的前n项和分别记为Sn,Tn,证明:Tn<eSn.
【分析】(1)求出f(x)的定义域,利用导数求其最大值,得到1+x<ex.取x=即可得到答案;
(2)由bn=n(1+)nan(n∈N+),变形求得,,,由此推测=(n+1)n.然后利用数学归纳法证明.
(3)由cn的定义、=(n+1)n、算术﹣几何平均不等式、bn的定义及,利用放缩法证得Tn<eSn.
【解答】(1)解:f(x)的定义域为(﹣∞,+∞),f′(x)=1﹣ex.
当f′(x)>0,即x<0时,f(x)单调递增;
当f′(x)<0,即x>0时,f(x)单调递减.
故f(x)的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).
当x>0时,f(x)<f(0)=0,即1+x<ex.
令,得,即.①
(2)解:;=;
.
由此推测:=(n+1)n.②
下面用数学归纳法证明②.
(1)当n=1时,左边=右边=2,②成立.
(2)假设当n=k时,②成立,即.
当n=k+1时,,由归纳假设可得
=.
∴当n=k+1时,②也成立.
根据(1)(2),可知②对一切正整数n都成立.
(3)证明:由cn的定义,②,算术﹣几何平均不等式,bn的定义及①得
Tn=c1+c2+…+cn=
=
=
=
=
<ea1+ea2+…+ean=eSn.
即Tn<eSn.
参与本试卷答题和审题的老师有:qiss;刘长柏;双曲线;maths;吕静;lincy;sxs123;cst;w3239003;sdpyqzh(排名不分先后)
2017年2月3日
相关文档
- 2012年天津市高考数学试卷(理科)2021-06-3025页
- 2009年福建省高考数学试卷(理科)【wo2021-06-3013页
- 2007年陕西省高考数学试卷(文科)【附2021-06-307页
- 2013年浙江省高考数学试卷(文科)2021-06-2522页
- 2009年上海市高考数学试卷(文科)【wo2021-06-255页
- 2005年湖北省高考数学试卷(理科)【附2021-06-257页
- 2015年浙江省高考数学试卷(文科)2021-06-2511页
- 2015年陕西省高考数学试卷(理科)2021-06-2525页
- 2015年重庆市高考数学试卷(理科)2021-06-2523页
- 2018年北京市高考数学试卷(理科)2021-06-2524页