- 121.50 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018-2019学年新疆石河子第二中学高一下学期第一次月考试卷 数学
一选择题
1.已知集合A={x∈R|3x+2>0} B={x∈R|(x+1)(x-3)>0} 则A∩B=( )
A.(-,-1) B.(-1,-) C.(-,3) D. (3,+)
2.若直线过坐标平面内两点(1,2),(4,2+),则此直线的倾斜角是( )
A.30° B.45° C.60° D.90°
3.已知三角形的三个顶点A(2,-1,4),B(3,2,-6),C(5,0,2),则过A点的中线长为( )
A. B.2 C.11 D.3
4.直线x-2y-1=0与直线x-2y-c=0的距离为2,则c的值为( )
A.9 B.11或-9
C.-11 D.9或-11
5.直线y=x+1与圆x2+y2=1的位置关系是( )
A.相切 B.相交但直线不过圆心 C.直线过圆心 D.相离
6.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为( )
A.x+y=0 B.x-y=0
C.x+y-6=0 D.x-y+1=0
7.已知直线kx-y+1-3k=0,当k变化时,所有的直线恒过定点( )
A.(1,3) B.(-1,-3) C.(3,1) D.(-3,-1)
8.已知圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0相交,则圆C1与圆C2的公共弦所在直线的方程为( )
A.x+2y+1=0 B.x+2y-1=0
C.x-2y+1=0 D.x-2y-1=0
9.点P(-3,4)关于直线x+y-2=0的对称点Q的坐标是( )
A.(-2,1) B.(-2,5)
C.(2,-5) D.(4,-3)
10.若点(1,-1)在圆x2+y2-x+y+m=0外,则m的取值范围是( )
A.m>0 B.m<C. 0<m< D.0≤m≤
11已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )
A.内切 B.相交 C.外切 D.相离
12.已知入射光线在直线l1:2x-y=3上,经过x轴反射到直线l2上,再经过y轴反射到直线l3上.若点P是直线l1上某一点,则点P到直线l3的距离为( )
A.6 B.3 C. D.
二、填空题
13.两平行直线3x+4y+5=0与6x+ay+30=0间的距离为d,则a+d=________.
14.圆x2+y2=4截直线x+y-2=0所得的弦长为________.
15.已知实数x,y满足6x+8y-1=0,则的最小值为________.
16.已知直线与圆交于,两点,过,分别做的垂线与轴交于,两点,若,则_______
三、解答题
17. 直线过点A(3,-1)且在两坐标轴上截距的绝对值相等,求满足条件的直线方程。
18如图,已知线段AB的中点C的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的端点B的轨迹方程.
19已知A(2,2),B(5,3),C(3,-1).
(1)求△ABC的外接圆的方程;(2)若点M(a,2)在△ABC的外接圆上,求a的值.
20.自点(-3,3)发出的光线L射到x轴上,被x轴反射,其反射线所在直线与圆相切,求光线L所在直线方程.
21如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.
(1)求证:BC⊥平面PAC;
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.
22.已知以点C(t,)(t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.
高一第一次月考教师版
1.已知集合A={x∈R|3x+2>0} B={x∈R|(x+1)(x-3)>0} 则A∩B=( )
A.(-,-1) B.(-1,-) C.(-,3) D. (3,+)
D
2.若直线过坐标平面内两点(1,2),(4,2+),则此直线的倾斜角是( )
A.30° B.45° C.60° D.90°
答案 A
3.已知三角形的三个顶点A(2,-1,4),B(3,2,-6),C(5,0,2),则过A点的中线长为( )
A. B.2 C.11 D.3
答案 B
2.直线x-2y-1=0与直线x-2y-c=0的距离为2,则c的值为( )
A.9 B.11或-9
C.-11 D.9或-11
答案 B
5.直线y=x+1与圆x2+y2=1的位置关系是( )
A.相切 B.相交但直线不过圆心 C.直线过圆心 D.相离
答案 B
6.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为( )
A.x+y=0 B.x-y=0
C.x+y-6=0 D.x-y+1=0
答案 D
7.已知直线kx-y+1-3k=0,当k变化时,所有的直线恒过定点( )
A.(1,3) B.(-1,-3) C.(3,1) D.(-3,-1)
答案 C
8.已知圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0相交,则圆C1与圆C2的公共弦所在直线的方程为( )
A.x+2y+1=0 B.x+2y-1=0
C.x-2y+1=0 D.x-2y-1=0
答案 B
9.点P(-3,4)关于直线x+y-2=0的对称点Q的坐标是( )
A.(-2,1) B.(-2,5)
C.(2,-5) D.(4,-3)
答案 B
10.若点(1,-1)在圆x2+y2-x+y+m=0外,则m的取值范围是( )
A.m>0 B.m<
C.0<m< D.0≤m≤
答案 C
11已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )
A.内切 B.相交
C.外切 D.相离
答案 B
12.已知入射光线在直线l1:2x-y=3上,经过x轴反射到直线l2上,再经过y轴反射到直线l3上.若点P是直线l1上某一点,则点P到直线l3的距离为( )
A.6 B.3 C. D.
答案 C
13.两平行直线3x+4y+5=0与6x+ay+30=0间的距离为d,则a+d=________.
答案 10
14.圆x2+y2=4截直线x+y-2=0所得的弦长为( )
A.2 B.1 C. D.2
答案 A
15.已知实数x,y满足6x+8y-1=0,则的最小值为________.
答案
16.已知直线与圆交于,两点,过,
分别做的垂线与轴交于,两点,若,则_______
【答案】4
17. 直线过点A(3,-1)且在两坐标轴上截距的绝对值相等,求满足条件的直线方程。
18如图,已知线段AB的中点C的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的端点B的轨迹方程.
B的轨迹方程为(x-9)2+(y-6)2=4.
19已知A(2,2),B(5,3),C(3,-1).
(1)求△ABC的外接圆的方程;
(2)若点M(a,2)在△ABC的外接圆上,求a的值.
△ABC的外接圆的方程为x2+y2-8x-2y+12=0.
a=2或6.
20.自点(-3,3)发出的光线L射到x轴上,被x轴反射,其反射线所在直线与圆相切,求光线L所在直线方程.
21如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.
(1)求证:BC⊥平面PAC;
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.
22.已知以点C(t,)(t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.
(1)证明 ∵圆C过原点O,且|OC|2=t2+.
∴圆C的方程是(x-t)2+(y-)2=t2+,
令x=0,得y1=0,y2=;
令y=0,得x1=0,x2=2t,
∴S△OAB=|OA|·|OB|=×||×|2t|=4,
即△OAB的面积为定值.
(2)解 ∵|OM|=|ON|,|CM|=|CN|,
∴OC垂直平分线段MN.
∵kMN=-2,∴kOC=.
∴=t,解得t=2或t=-2.
当t=2时,圆心C的坐标为(2,1),|OC|=,
此时C到直线y=-2x+4的距离d=<,
圆C与直线y=-2x+4相交于两点.
当t=-2时,圆心C的坐标为(-2,-1),|OC|=,
此时C到直线y=-2x+4的距离d= >.
圆C与直线y=-2x+4不相交,
∴t=-2不符合题意,舍去.
∴圆C的方程为(x-2)2+(y-1)2=5.